• 제목/요약/키워드: energy storage properties

검색결과 575건 처리시간 0.023초

Effect of Nickel Oxide on Hydrogen Storage Behaviors of Mesoporous SBA-15

  • 이슬이;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.231-231
    • /
    • 2009
  • In this work, we prepared the Ni-loaded porous SBA-15 (SBA-15) by a depositionprecipitation (D-P) method, in order to enhance the hydrogen storage capacity. The structure and morphology of the Ni/SBA-15 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). The results showed that, at the Ni loading used at the DP times in the range of 0-120 min, SBA-15 preserved the well-ordered hexagonal porous arrangement. The textural properties of the Ni/SBA-15 were analyzed using N2 adsorption isotherms at 77 K. Specific surface area and mesopore volume of the samples were determined from the Brunauer-Emmett-Teller (BET) equation and Barrett-Joiner-Halenda (BJH) method, respectively. The hydrogen storage capacity of the Ni/SBA-15 was evaluated at 298 K/10 MPa. The hydrogen storage capacity of the Ni/SBA-15 was increased in accordance with Ni content. Consequently, it was found that the presence of Ni on mesoporous SBA-15 created hydrogen-favorable sites which enhanced the hydrogen storage capacity by spillover effect.

  • PDF

Mg2NiHx-10wt% CaF2 수소저장합금의 제조와 수소화 흡수평가 (Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites)

  • 유제선;한정흠;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.553-557
    • /
    • 2020
  • It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.

방사선(放射線) 조사(照射)와 자연저온(自然低溫)에 의한 송이 저장(貯藏) (Storage of Pine Agaric by Irradiation Combined with Natural Low Temperature)

  • 조한옥;변명우;권중호
    • 한국식품과학회지
    • /
    • 제16권2호
    • /
    • pp.182-184
    • /
    • 1984
  • 감마선(線) 조사(照射)와 자연저온(自然低溫)에 의한 송이 저장법(貯藏法) 개발(開發)을 목적(目的)으로 $1{\sim}2.5kGy$ 범위(範圍)의 감마선(線)을 조사(照射)하고 자연저온(自然低溫) 저장고(貯藏庫)에 저장(貯藏)하면서 이화학적(理化學的) 변화(變化)를 조사(調査)하였다. 비조사구(非照射區)에서는 저장(貯藏) 7 일(日)에 97%의 갓이 피었고, 28%의 높은 부패율(腐敗率)을 나타내었으나 적정선량(適正線量)이라고 생각되는 $2{\sim}2.5kGy$ 조사구(照射區)에서는 5%의 갓핌과 $5{\sim}8%$의 낮은 부폐율(腐敗率)을 보였으며, 중량감소(重量減少), texture 및 내부(內部)의 변색(變色)에 있어서도 조사구(照射區)는 비조사구(非照射區) 보다 우수하여 10일(日) 이상(以上)의 저장기간(貯藏期間)을 연장(延長)할 수 있었다. 화학성분(化學成分) 변화(變化)에 있어서는 선량(線量)의 증가(增加)와 더불어 환원당(還元糖)이 약간증가(增加)하였고 ascorbic acid는 감소(減少)하였으며 다른 성분(成分)에 있어서는 별차이(別 差異)가 없었다.

  • PDF

Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가 (Material Life Cycle Assessments on Mg2NiHx-CaO Composites)

  • 황준현;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (II) (Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (II))

  • 조경원;최재하;장민혁;이영상;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.120-126
    • /
    • 2015
  • Recently, the ever-increasing use of fossil fuels for rapid industrial development and population significantly caused an environment pollution and global warming such as climate change. So research and development of sustainable and eco-friendly energy have been performed. Especially the interest in nuclear fusion fuel was significantly increased from the developed countries. The system of fusion energy production was tritium separation, storage and delivery, and purification. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER). Welding part of the SDS bottles for storing the tritium is known to be susceptible to hydrogen embrittlement. In this study, conducted a study for the relaxation of the stability and hydrogen embrittlement of the weld area. The hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as impact test and hardness test according to using the alkaline cleaning liquid for hydrogen embrittlement relief and the fracture was observed by scanning electron microscopy (SEM) after the mechanical properties evaluation.

고로슬래그 혼입 콘크리트의 고온 조건에서의 열역학 성능 (Thermal Characteristics of Concrete Fabricated with Blast Furnace Slag Subjected to Thermal Cycling Condition)

  • 양인환;박지훈
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.414-420
    • /
    • 2017
  • 이 연구에서는 고온의 태양열 에너지를 저장하기 위한 고로슬래그 콘크리트의 열역학적 특성을 파악하였다. 고로슬래그 콘크리트의 열역학적 특성에 미치는 영향을 파악하기 위한 실험연구를 수행하였다. 실험변수로써 고로슬래그 함유량과 물-바인더 비를 고려하였다. 고로슬래그 콘크리트의 역학적 특성으로써 열사이클 전과 후의 압축강도 및 인장강도를 측정하고, 열적 특성으로써 열전도율과 비열을 측정하였다. 고로슬래그를 포함한 콘크리트의 열싸이클 적용 후의 잔류압축강도가 고로슬래그를 포함하지 않은 콘크리트의 잔류압축강도보다 크다. 또한, 고로슬래그를 혼입한 콘크리트의 열전도율이 고로슬래그를 포함하지 않은 콘크리트의 열전도율보다 더욱 크다. 이는 고로슬래그 콘크리트가 열에너지의 축열과 방열에 효과적인 것을 나타낸다. 실험연구 결과는 콘크리트 열저장 축열 모듈 설계에 효율적으로 활용될 수 있다.

축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성 (Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials)

  • 김석환;정수광;임재한;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

펄스 측정법에 기반한 리튬이차전지 출력 측정에 관한 전산 모사 (Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods)

  • 박주남;변승우;;한세경;최진혁;유명현;이용민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.33-38
    • /
    • 2015
  • 시간대별 효율적인 전력 운영과 전력품질 향상을 위해 ESS (Energy Storage System)의 보급이 세계적으로 활발하게 이루어지고 있다. 이러한 ESS용 전원소자로 리튬이차전지의 채용이 급격히 늘어남에 따라, 리튬이차전지의 수명 및 출력 열화 거동을 측정 및 예측하는 기술이 시급히 요구되고 있다. 특히, ESS 운영에 있어 핵심 특성인 리튬이차 전지 출력은 측정이 어려울 뿐만 아니라, 정확한 측정을 위해서는 많은 시간이 소요되는 문제점이 있다. 따라서, 본 연구에서는 ESS용 리튬이차전지 단전지를 전산 모델링 한 후, 펄스 측정법을 적용하여 충전상태에 따른 방전 및 충전시의 직류저항(DC-IR)과 출력을 예측한다. 또한, 두 가지 펄스 측정법인 HPPC (Hybrid Pulse Power Characteristics)와 J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)의 결과를 비교 분석한다.

절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가 (Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains)

  • 이주승;윤송현;임지호;박춘길;류정호;정대용
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.73-78
    • /
    • 2019
  • Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.

Ti1-XZrxVNi 및 Ti1-XZrxV0.5Ni1.5계 수소저장합금의 전기화학적 성질 (Electrochemical Properties of Hydrogen Absorbing Ability Ti1-XZrxVNi Ti1-XZrxV0.5Ni1.5 Alloys)

  • 조태환;박찬교
    • 한국수소및신에너지학회논문집
    • /
    • 제2권1호
    • /
    • pp.15-21
    • /
    • 1990
  • Nickel-hydrogen battery systems with metal hydride alloys are expected to have both higher energy density and lower pollution than nickel-cadmium cells. Nickel-hydrogen storage cells are expected to be well-suited for use in space crafts for a large capacity power storage system. Their major advantages are not only a capability of deep DOD(depth of discharge) using but also with excellent durability under excessive overcharging and overdischarging. In this study, the charge/discharge capacities, anodic polarization characteristics and durability for the continious charge/diacharge cycling of the $Ti_{1-X}Zr_XVNi$ and $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were measured by electrochemical method. The electrode properties of the copper or nickel plated $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were examined with a battery charge/discharge testing system in the temperature range of -5 to $25^{\circ}C$.

  • PDF