Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.6.553

Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites  

YU, JE-SEON (Department of Materials Science & Engineering, Korea National University of Transportation)
HAN, JUNG-HUM (Department of Materials Science & Engineering, Korea National University of Transportation)
SIN, HYO-WON (Department of Materials Science & Engineering, Korea National University of Transportation)
HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.6, 2020 , pp. 553-557 More about this Journal
Abstract
It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.
Keywords
Hydrogen storage; Hydrogenation properties; Mechanical alloying; Kinetics; Magnesium hydride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Kirchheim, T. Mutschele, W. Kieninger, H. Gleiter, R. Birringer and T. D. Koble, "Hydrogen in amorphous and nanocrystalline metals", Mater. Sci. Eng., Vol. 99, 1988, pp. 457-462.   DOI
2 A. K. Singh, A. K. Singh and O. N. Srivastava, "On the synthesis of the Mg2Ni alloy by mechanical alloying.", J. Alloy. Comp., Vol. 227, No. 63, 1995, pp. 63-68.   DOI
3 L. Zaluski, A. Zaluska, and J. O. Strom-Olsen, "Nanocrystalline metal hydrides", J. Alloy. Comp., Vol. 253-254, 1997, pp. 70-79, doi: https://doi.org/10.1016/S0925-8388(96)02985-4.   DOI
4 C. Iwakura, S. Nohara, S. G. Zhang, and H. Inoue, "Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite", J. Alloy. Comp., Vol. 285, No. 1-2, 1999, pp. 246-249, doi: https://doi.org/10.1016/S0925-8388(98)00966-9.   DOI
5 J. J. Reilly Jr. and R. H. Wiswall Jr., "Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4", Inorg. Chem., Vol. 7, No. 11, 1968, pp. 2254-2256, doi: https://doi.org/10.1021/ic50069a016.   DOI
6 A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, "Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport", Physics Reports, Vol. 503, 2011, pp. 77-114.   DOI
7 L. Liao and X. Duan, "Graphene-dielectric integration for graphene transistors", Materials Science and Engineering, Vol. 70, No. 3-6, 2010, pp. 354-370, doi: https://doi.org/10.1016/j.mser.2010.07.003.   DOI
8 P. A. Denis, R. Faccio, and F. Iribarne, "How is the stacking interaction of bilayer graphene affected by the presence of defects?", Computational and Theoretical Chemistry, Vol. 995, 2012, pp. 1-7.   DOI
9 F. A. Lewis and A. Aladjem, "Hydrogen metal systems I", Scitec Publications, Switzerland, 1996.
10 H. S. Ha, J. K. Lee, S. K. Kim, S. B. Jung, Y. J. Kim, and H. H. Jo, "Effects of CaO and Ca additions on Microstructure and Ignition Resistance of Pure Mg", Journal of Korea Foundry Society, Vol. 26, No. 3, 2006, pp. 146-151.
11 L. M. Das, "Hydrogen engines: a view of the past and a look into the future", Int. J. Hydrogen Energy, Vol. 15, No. 6, 1990, pp. 425-443, doi: https://doi.org/10.1016/0360-3199(90)90200-I.   DOI
12 K. W. Cho, J. H. Park, K. I. Kim, S. H. Kim, M. W. Jung, S. H. Kim, J. H. Choi, and T. H. Hong, "Hydrogenation Properties of Mg2Ni-(5, 10mass)NbHx Composites by Reactive Mechanical Alloying", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 6, 2009, pp. 512-518.
13 S. K. Sahoo, S. Parveen, and J. J. Panda, "The present and future of nanotechnology in human health care", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.   DOI
14 W. H. Suh, K. S. Suslick, G. D. Stucky, and Y. H. Suh, "Nanotechnology, nanotoxicology, and neuroscience", PProgress in Neurobiology, Vol. 87, No. 3, 2009, pp. 133-170, doi: https://doi.org/10.1016/j.pneurobio.2008.09.009.   DOI
15 M. Gajdics, T. Spassov, V. K. Kis, E. Schafler, and A. Revesz, "Microstructural and morphological investigations on Mg-Nb2O5-CNT nanocomposites processed by high-pressure torsion for hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 45, No. 14, 2020, pp. 7917-7928, doi: https://doi.org/10.1016/j.ijhydene.2019.06.165.   DOI
16 X. Xie, C. Ni, B. Wang, Y. Zhang, X. Zhao, L. Liu, B. Wang, and W. Du, "Recent advances in hydrogen generation process via hydrolysis of Mg-based materials: a short review", Journal of Alloys and Compounds, Vol. 816, 2020, pp. 152634, doi: https://doi.org/10.1016/j.jallcom.2019.152634.   DOI