• Title/Summary/Keyword: energy storage properties

Search Result 575, Processing Time 0.035 seconds

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Effect of Storage Temperature on the Physicochemical Characteristics in Kochujang(Red Pepper Soybean Paste) (저장온도에 따른 고추장의 품질변화)

  • Shin, Dong-Bin;Park, Woo-Mun;Yi, Ock-Sook;Koo, Min-Seon;Chung, Kun-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.300-304
    • /
    • 1994
  • To predict quality change of Kochujang distributed in the market, physicochemical properties were observed during storage at $13^{\circ}C$, $27^{\circ}C$ and $37^{\circ}C$ for 240 days. Moisture, crude protein and capsaicin contents were nearly constant for storage at the selected temperatures. Amino nitrogen, value of surface color and pH were decreased during storage while ammonia nitrogen and titratable acidity were increased. Storage temperature affected quality change significantly as higher temperature showed clear increase or decrease phenomena of above factors. Number of total cell count was not changed significantly, and fungi was not detected. From the correlation coefficient among physicochemical properties and sensory evaluation scores, the highest correlation was obtained in amino nitrogen content and sensory score. Degradation of amino nitrogen was a first order reaction, and the $Q_{10}$ value calculated from reaction constant was 2.98. Also, activation energy for the destruction of amino nitrogen calculated from Arrhenius equation was 15.34 Kcal/mole.

  • PDF

Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS) (자전연소합성법으로 제조한 Zr계 AB2-x Mx 금속수소화물의 수소저장특성)

  • Hur, Tae Hong;Han, Jeong Seb;Kim, Jin Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.

A Study on Acceleration Aging Characteristics of B-KNO3 Igniter (B-KNO3 점화제의 가속 노화 특성 연구)

  • Paik, Jong Gyu;Ryu, Byung Tae;Kwon, Mira
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • This research investigated the aging properties of the $B-KNO_3$ system as the igniter. The $B-KNO_3$ system showed the degradation in ignition properties depending on the method and period of storage. It should be found out the cause of the degradation to predict the reliability of the igniters. The changes of the properties by the degradation after aging tests were analyzed by microstructure analysis, XRD analysis and thermal analysis using DSC. It was found out that the lattice parameters of the $KNO_3$ as the oxidizer in the ignition system was changed into the JCPDS values as the aging time increased. Conclusively, the changes of the crystal structure of oxidizer affected the activation energy increasing as aging time increased.

Hydrogen-storage Properties of CoO-Added Mg by Reactive Grinding (반응성분쇄에 의해 CoO를 첨가한 Mg의 수소저장특성)

  • Song, Myoungyoup;Lee, Dongsub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.321-326
    • /
    • 2003
  • We tried to improve the $H_2$-sorption properties of Mg by mechanical grinding under $H_2$ (reactive grinding) with CoO. The sample Mg+10wt.%CoO as prepared absorbs 1.25wt.% hydrogen and the activated sample absorbs 2.39wt.% hydrogen for 60min at 598K, $11.2barH_2$. The reactive grinding of Mg with CoO increases the $H_2$-sorption rates by facilitating nueleation(by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. Hydriding-dehydriding cycling increases the $H_2$-sorption rates by making cracks on the surface of Mg particles and reducing the particle size of Mg.

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

Development of Superconducting Bulk for Superconductor Mortor (초전도모터 적용을 위한 벌크개발)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1311_1312
    • /
    • 2009
  • In this article, current state of development of energy storage system using superconductor was summarized. As a result of continuous efforts, high critical current density exceeding $10^4\;A/cm^3$ at 77K and strong levitation capacity have been achieved in Y-Ba-Cu-O superconductor which is fabricated by melting technique. Various applications using the levitation properties of high-Tc superconductor is expected to come true in near future.

  • PDF

Batteries for Photovoltaic Applications (태양전지용 축전지)

  • Kim, D.S.;Ebong, A.U.;Lee, S.H.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • Characteristics and properties of batteries applicable to the photovoltaic system are described in this paper. The use of a number of different types of batteries and designs depends on the many and varied requirements for battery power and the different environmental and electrical conditions under which they must operate. Most of the batteries used in PV systems are lead/acid batteries, though nickel/cadmium batteries are used for small applications in locations with extreme climates or where high reliability is essential such as spacecraft. The vanadium redox battery has been acknowledged as a promising energy storage system for a wide range of applications.

  • PDF

Effect of Particle Size of Cathode Materials on Discharge Properties of Thermal Batteries (양극 활물질의 입도에 따른 열전지 출력 특성 연구)

  • Lee, Jungmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.399-406
    • /
    • 2014
  • Thermal batteries are used for military power sources that require robustness and long storage life such as missiles and torpedoes. $FeS_2$ powder is currently used for cathode materials because of its high specific energy density, environmental non-toxicity and low cost. However, large particle size of conventional $FeS_2$ has been deterred its possible application for higher power thermal batteries. In order to improve the power density, high energy ball milling of $FeS_2$ has been introduced to crush the micron-sized $FeS_2$. Discharge characteristics of the single cells fabricated with nano-materials and conventional $FeS_2$ powder were evaluated.