• 제목/요약/키워드: energy storage mechanism

검색결과 93건 처리시간 0.031초

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.

고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학 (Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries)

  • 하시온;김경호
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

에너지 저장장치 비교연구를 통한 초전도 플라이휠의 최적 활용 방안 연구 (A Study on Optimal Application Strategies of SFES through Comparison Studies for Energy Storage Devices)

  • 이한상;송지영;장길수;이정필;한영희;성태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.472_473
    • /
    • 2009
  • It is fascinated research theme to store electric energy as much as possible and to utilize it at the point of proper time. Especially, the demand for energy storage devices has been increased based on the interest for distributed generation and smartgrid. As the results for a number of researches on it, various types of energy storage devices have been developed. Each devices have its own dynamic characteristics, power capacity, and storage capacity followed by storage mechanism. In this paper, the comparison research for various energy storage devices has been performed based on power capacity, storage capacity, discharging time, lifetime, efficiency, and cost. Application researches of SFES(superconducting flywheel energy storage), characterized as 300kW-100kWh, have been performed also.

  • PDF

광합성을 모사한 광촉매 물분해 수소 제조 (The photocatalytic water splitting into $H_2$ and $O_2$ mimicking a Z-scheme mechanism)

  • 전명석;홍준기;전영갑;최호석
    • 한국태양에너지학회 논문집
    • /
    • 제23권4호
    • /
    • pp.29-35
    • /
    • 2003
  • We studied the water splitting into $H_2$ and $O_2$ using two different semiconductor photo catalysts and redox mediator, mimicking the Z-scheme mechanism of the photosynthesis, $H_2$ evolution took place on a Pt-$SrTiO_2$ (Cr-Ta doped) photocatalyst using $I^-$ electron donor under the visible light irradiation. The Pt-$WO_3$ photocatalyst showed an excellent activity of the $O_2$ evolution using $IO_3^-$ electron acceptor under visible light. $H_2$ and $O_2$ gases evolved in the stoichiometric ratio($H_2/O_2$=2) under visible light using a mixture of the Pt-$WO_3$ and Pt-$SrTiO_3$ (Cr-Ta doped) suspended in NaI aqueous solution. We proposed a two-step photo-excitation mechanism using redox mediator under the visible irradiation.

Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구 (A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys)

  • 이지열;김찬중;김대용
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구 (Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System)

  • 유승남;한귀영
    • 태양에너지
    • /
    • 제19권2호
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

리튬이온전지에서 새로운 양극재료를 위한 금속인산화물 (Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries)

  • 정성윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.