• 제목/요약/키워드: energy loss

검색결과 3,507건 처리시간 0.03초

주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스 (Complex Compliance of Rough Rice Kernel under Cyclic Loading)

  • 김만수;라우정;박종민
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석 (Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center)

  • 양성준;김영주;허준;김태성
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

저품위탄 연소시 탈황용 승압송풍기 실속시점 예측 (Prediction of the Occurring Time of Stall for a Booster Fan in a Power Plant Combusting Low Quality Coal through Draft Loss)

  • 김영균;이재헌
    • 플랜트 저널
    • /
    • 제8권4호
    • /
    • pp.34-39
    • /
    • 2012
  • 석탄화력발전소에서 저품위탄 연소시 통풍저항 변화로 인해 승압송풍기의 운전점에 영향을 주는 것을 분석하여 현재운전점 대비 실속시점을 예측하였다. 연료의 발열량이 낮을수록 통풍저항 증가 속도가 빨라지며, 통풍저항과 승압송풍기의 운전점과는 강한 상관관계가 있음을 확인하였다. 발열량이 낮을수록 통풍저항이 빨리 상승하며 이는 곧 승압송풍기의 운전점이 설계탄 대비해서 실속 한계운전점에 빨리 도달하게 된다. 이를 근거로 현재운전점 대비 한계운전점까지의 운전여유분과 발열량별 통풍저항 증가 속도를 계산하여 실속시점을 예측할 수 있어 송풍기 실속으로 인한 발전출력의 감소나 운전정지에 대비한 정비계획 수립 등 안정운전에 많은 도움이 될 것으로 예상한다.

  • PDF

적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가 (Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis)

  • 문종필;윤남규;이성현;김학주;이수장;김영화
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

한국 아동의 에너지 소비량에 관한 연구 (A Study on Energy Expenditure in Korean Children)

  • 오승호
    • 한국식품영양과학회지
    • /
    • 제22권5호
    • /
    • pp.531-538
    • /
    • 1993
  • 본 연구는 8-12세의 남녀 국민학생 각각 8명씩을 대상으로 4주간 평상시와 같은 생활양식과 식생활 환경하에서 에너지 섭취량(GE)과 체내 에너지 보류량 (BE)의 변동을 측정하므로서(에너지 평형법) 에너지 소비량을 산출하였다. 에너지 섭취량과 대변으로의 에너지 손실량(FE)은 열량계로 측정하였고 소변으로의 에너지 손실량(UE)은 질소 배설량으로부터 환산하였다. 체내 지방조직량(FM)은 피부두께를 측정하여 산출한 신체 밀도법에 의하였다. 총 에너지 섭취량에 대한 당질, 단백질 및 지방질의 구성비는 남자 아동이 각각 70.0$\pm$0.5%, 10.2$\pm$0.3% 및 19.9$\pm$0.5%이었으며 여자 아동이 각각 74.0$\pm$1.7%, 10.7$\pm$0.3%및 15.3$\pm$0. 5%이었다. 총 에너지 섭취량에 대한 대변으로의 에너지 손실율은 남자 및 여자 아동별로 각각 5.1%및 4. 5%이었다. 대변과 소변으로의 에너지 손실량을 감하여 산출한 1일 1인당 평균 대사에너지량(ME)은 남자 및 여자 아동별 각각 1862$\pm$15kca1 및 1627$\pm$20kca1 이었다. 28일 동안의 체성분 변동량으로부터 산출한 체내 총 에너지 변동량(BE)은 남자 및 여자 아동별로 각각 평균 +1524$\pm$539kcal 및 +3622$\pm$718kcal가 증가하였다. 1일 1인당 평균 에너지 소비량은 남자 아동이 1812$\pm$37kca1이고 여자 아동이 1487$\pm$25kcal로서 체중 kg당 에너지 소비량은 남자 및 여자 아동별로 각각 62 $\pm$2kcal 및 52 $\pm$2kcal이었다.

  • PDF

한국 청소년의 에너지 소비량에 관한 연구 (A Study on Energy Expenditure in Korean Adolescent)

  • 오승호;이선영
    • 한국식품영양과학회지
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 1992
  • 본 연구는 $16{\sim}18$세의 남자 고등학생 7명을 대상으로 4주간 평상시와 같은 생활양식과 적정 체중을 유지시키면서 에너지 섭취량(GE)과 체내 에너지 보류량(BE)의 변동을 측정하므로서 (에너지 평형법) 에너지 소비량(EE)을 산출하였다. 에너지 섭취량과 대변으로의 에너지 손실량(FE)은 열량계로 측정하였고 소변의 것 (UE)은 질소 배설량으로부터 환산하였다. 지방 조직량(FM)은 피부두께를 측정하여 산출한 신체 밀도법에 의하였다 1) 총 에너지 섭취량에 대한 당질, 단백질 및 지방질의 구성비는 각각 $73.7{\pm}0.3%,\;13.5{\pm}0.3%$$12.9{\pm}0.5%$이었다. 2) 총 에너지 섭취량에 대한 대변으로의 에너지 손실율은 2.4% 이었다. 3)대변과 소변으로의 에너지 손실량을 감하여 산출한 1일1인당 평균 대사에너지량(ME)은 $2582{\pm}61kcal$이었다. 4) 28일동안의 체성분 변동량으로부터 산출한 체내 총 에너지 변동량(BE)은 평균 $4309{\pm}1837kcal$가 감소되었다. 5) 1일1인당 평균 에너지 소비량은 $2736{\pm}59kcal$로서 체중 kg당 $46{\pm}1kcal$이었다.

  • PDF

플랜트에서 운전 중인 유도전동기의 효율 계산 (Efficiency Calculation of Operating Induction Motors in Plant)

  • 박형준;정찬수;이해수;이상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2046-2047
    • /
    • 2007
  • This paper is about the energy efficiency calculation of operating electric motors in production facilities. The most important 1st step to efficient operation of plants is the evaluation of the energy efficiency of the production facilities in that plant. Through this procedure, we can decide that which facilities i.e. induction motors, in this paper, should do maintenance or not. There are mainly 2 types of energy which are used in production facilities, the one is electric energy and the other is heat energy but in order to make calculation simple, in this paper, we are only focusing on electric energy, efficiency and energy loss of the electric motors under operation conditions. As a case study, we chose electric motors in a certain process in a production facilities, and calculated efficiency and loss by using measured data.

  • PDF

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측 (Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying)

  • 박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Influence of Guide Vane Setting in Pump Mode on Performance Characteristics of a Pump-Turbine

  • Li, Deyou;Wang, Hongjie;Nielsen, Torbjorn K.;Gong, Ruzhi;Wei, Xianzhu;Qin, Daqing
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.154-163
    • /
    • 2017
  • Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. However, the head characteristics are different under different guide vane openings. In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings. Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. The results reveal that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic loss (power dissipation) in the guide and stay vanes. It is also found that the hydraulic loss mainly comes from the flow separation and vortices. In addition, in some operating conditions, the change of guide vane opening will change the flow angle at the runner inlet and outlet, which will change the Euler momentum (power input). The joint action of Euler momentum and hydraulic loss results in the change of the head characteristics.