• 제목/요약/키워드: energy dissipation factor

검색결과 119건 처리시간 0.025초

강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가 (Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor)

  • 오영훈;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF

스퍼어 기어의 밀폐단조에 관한 상계해석 (An upper bound analysis for closed-die forging of spur gear forms)

  • Park, J.C.;Hur, K.D.;Park, J.U.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.26-37
    • /
    • 1994
  • A kinematically admissible velocity field for the numerical analysis of closed-die forging process of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional frictional factor has been assumed on the contacting surfaces. The effects of root diameter, number of teeth, and friction factor are determined on the relative forging pressure. The frictionless relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, the relative forging presure increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

  • PDF

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

${\gamma}$-선 조사에 따른 LDPE/EVA 블랜드의 전기적, 기계적 특성 (Electrical and Mechanical Properties of Gamma-ray Irradiated LDPE/EVA Blends)

  • 이청;김기엽;김규백;정상호;류부형
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.55-59
    • /
    • 2006
  • The radiation effects on electrical and mechanical properties of LDPE/EVA blends with various vinyl acetate contents were investigated. Radiation degradation of LDPE/EVA blends were studied by using gelation, volume resistivity, permittivity, dissipation factor, elongation at break, and E-modulus. As vinyl acetate contents increased in LDPE/EVA blends, electrical insulation characteristics were deteriorated, but flexibility was improved. As irradiation doses increased, electrical insulation characteristics were improved, but flexibility was deteriorated.

LiF ( Mg , Cu , P ) 단결정의 TSD 특성에 관한 연구 (Study on TSD Characteristics of LiF ( Mg , Cu , P ) Single Crystal)

  • 도시홍
    • 수산해양기술연구
    • /
    • 제26권1호
    • /
    • pp.8-13
    • /
    • 1990
  • LiF(Mg, Cu, P) 단결정의 미시적 이완매개변수와 유전손실 등을 구하기 위하여 TSD glow곡선을 측정하고, 측정된 glow곡선을 초기상승법, 가열율법 및 전면적법으로 해석하였다. 쌍극자의 이완시간 $\tau$, pre-exponential인자 $\tau$하(o) 및 활성화에너지E는 각각 12.19S, 1.97$\times$10 상(-12)S 및 0.55eV이었다. 또한 TSD glow곡선을 사용하여 온도영역 300k~340k 사이에서 구한 LiF(Mg, Cu, P)단 결정의 tan$\delta$값은 약 3$\times$10 상(-2)이었다.

  • PDF

Probabilistic models for curvature ductility and moment redistribution of RC beams

  • Baji, Hassan;Ronagh, Hamid Reza
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.191-207
    • /
    • 2015
  • It is generally accepted that, in the interest of safety, it is essential to provide a minimum level of flexural ductility, which will allow energy dissipation and moment redistribution as required. If one wishes to be uniformly conservative across all of the design variables, curvature ductility and moment redistribution factor should be calculated using a probabilistic method, as is the case for other design parameters in reinforced concrete mechanics. In this study, simple expressions are derived for the evaluation of curvature ductility and moment redistribution factor, based on the concept of demand and capacity rotation. Probabilistic models are then derived for both the curvature ductility and the moment redistribution factor, by means of central limit theorem and through taking advantage of the specific behaviour of moment redistribution factor as a function of curvature ductility and plastic hinge length. The Monte Carlo Simulation (MCS) method is used to check and verify the results of the proposed method. Although some minor simplifications are made in the proposed method, there is a very good agreement between the MCS and the proposed method. The proposed method could be used in any future probabilistic evaluation of curvature ductility and moment redistribution factors.

Graphene, Cu와 Ag 나노 파우더를 이용한 열전도재의 방열 특성에 관한 연구 (A study on the heat dissipation characteristic of thermal interface materials with Graphene, Cu and Ag nano powders)

  • 박상혁;임성훈;김현지;노정필;허선철
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.767-773
    • /
    • 2019
  • The thermal diffusion performance of the electronic device is a factor for evaluating the stability of the electronic device. Therefore, many of research have been conducted to improve the thermal characteristics of thermal interface materials, which are materials for thermal diffusion of electronic products. In this study, nano thermal grease was prepared by blending graphene, silver and copper nano powders into a thermal grease, a type of thermal interface materials, and the heat transfer rate was measured and compared for the purpose of investigating the improved thermal properties. As a result, the thermal properties were good in the order of graphene, silver and copper, which is thought to be due to the different thermal properties of the nano powder itself.

IGBT 전력반도체 모듈 패키지의 방열 기술 (Heat Dissipation Technology of IGBT Module Package)

  • 서일웅;정훈선;이영호;김영훈;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권3호
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

콘크리트의 손상모델에 관한 실험적 연구 (Experimental Study on the Damage Model of Concrete)

  • 방명석
    • 대한토목학회논문집
    • /
    • 제11권1호
    • /
    • pp.9-16
    • /
    • 1991
  • 콘크리트는 고응력 범위에서 적은 반복횟수에 의해서도 파괴에 도달할 수 있고 소성 변형에 의한 콘크리트 손상이 심각하다. 본 연구에서는 반복하중하에서의 콘크리트의 손상과정에 관하여 실험적으로 연구하였고 에너지개념에 의한 소상모델을 개발하였다. 실험은 일축압축상태의 무근콘크리트에 대해서 변위제어상태하에서 수행하였다. 콘크리트의 파괴시점은 잔여강도가 존재하지 않은 상태까지로 가정하였고, 손상도는 실험적으로 파괴시까지 구해진 에너지 발산량과 주어진 횟수의 반복하중에 의한 에너지 발산량의 비로 정의하였다. 고응력 범위에서 손상도는 변형량의 비선형함수로 누적되며, 손상비율은 초기에 높고 파괴상태에 가까울수록 점차적으로 감소하였다.

  • PDF