Browse > Article
http://dx.doi.org/10.6117/kmeps.2014.21.3.007

Heat Dissipation Technology of IGBT Module Package  

Suh, Il-Woong (Seoul National University of Science and Technology)
Jung, Hoon-Sun (Seoul National University of Science and Technology)
Lee, Young-Ho (Woojin Industrial System Co., Ltd.)
Kim, Young-Hun (SP Semiconductor & Communication Co., Ltd.)
Choa, Sung-Hoon (Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.21, no.3, 2014 , pp. 7-17 More about this Journal
Abstract
Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.
Keywords
Insulated gate bipolar transistor; package module; heat dissipation; thermal management;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Shinohara and Q. Yu, "Fatigue life evaluation accuracy of power devices using finite element method", International Journal of Fatigue, 33(9), 1221 (2011).   DOI
2 J. He, W. L. Morris, M. C. Shaw, J. C. Mather and N. Sridhar, "Reliability in large area solder joint assemblies and effects of thermal expansion mismatch and die size", International Journal of Microcircuits and Electronic Packaging., 21(3), 297 (1998).
3 L. L. Liao, T.Y . Hung, C. K. Liu, W. Li, M. J. Dai and K. N. Chiang, "Electro-thermal finite element analysis and verification of power module with aluminum wire", Microelectronic Engineering, 120, 114 (2014).   DOI
4 T. Y. Hung, S. Y. Chiang, C. Y. Chou, C. C. Chiu and K. N. Chiang, "Thermal design and transient analysis of insulated gate bipolar transistors of power module", Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Proc. 12th IEEE Intersociety Conference, Las Vegas, 1 (2010).
5 N. K. Kim, Y. T. Choi, S. C. Kim, J. M. Park and E. D. Kim, "Thermal and stress analysis of power IGBT module package by finite element method", J. microelectron. packag. Soc., 6(4), 23 (1999).
6 E. Marcault, M. Breil, A. Bourennane, P. Tounsi, P. Dupuy, "Impact of the solder joint ageing on IGBT I-V characteristics using 2D physical simulations", Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Proc. 12th International Conference, Linz, 1/4 (2011).
7 K. S. Kim, D. H. Choi and S. B. Jung, "Overview on thermal management technology for high power device packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014).
8 M. Ciappa, "Selected failure mechanisms of modern power modules", Microelectronics Reliability, 42, 653 (2002).   DOI
9 O. Schilling, M. Schfer, K. Mainka, M. Thoben and F. Sauerland, "Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules", Microelectronics Reliability, 52, 2347 (2012).   DOI
10 W. Wu, M. Held, P. Jacob, P. Scacco and A. Birolini, "Investigation on the long term reliability of power IGBT modules", Proc. 7th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Yokohama, 443 (1995)
11 A. Morozumi, K. Yamada and T. Miyasaka, "Reliability design technology for power semiconductor modules", Fuji Electronic Review, 47(2), 54 (2001).
12 R. Hocine, A. B. Stambouli and A. Saidane, "A Three-dimensional TLM Simulation method for thermal effect in high power insulated gate bipolar transistors", Microelectronic engineering, 65, 293 (2003).   DOI
13 Z Wang, W. Qiao, B. Tian and L. Qu. "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules", Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 513, 2014 Twenty-Ninth Annual IEEE (2014).
14 T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa and Y. Yamada, "Thermal characterizations of Cu nanoparticle joints for power semiconductor devices", Microelectronics Reliability, 53, 1543 (2013).   DOI
15 S. H. Pulko, R. Hocine, A. B. Stambouli and A. Saidane, "TLM method for thermal investigation of IGBT modules in PWM mode", Microelectronic engineering, 86, 2053 (2009).   DOI   ScienceOn
16 Y. H. Kwak, Y. K. Lee, J. H. Cho, C. S. Hong, K. S. Kim and B. S. Suh, "Numerical study on thermal characteristics of high power semiconductor modules", Transactions of Korean Institute of Power electronics, 7, 87 (2013).
17 Y. Xu and D. C. Hopkins, "Misconception of thermal spreading angle and misapplication to IGBT power modules", Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 545, 2014 Twenty-Ninth Annual IEEE (2014).
18 M. M. Yovananovich and E. E Marotta, "Thermal spreading and contact resistances", Heat Transfer Handbook, A. Bejan and A.D. Kraus, John Wiley & Sons Inc., pp.261-395 (2003).
19 S. Narumanchi, M. Mihalic, K. Kelly and G. Eesley, "Thermal interface materials for power electronics applications", Proc. 11th Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, 395 (2008).
20 R. Prasher, "Thermal interface materials : historical perspective, status and future directions", Proceedings of the IEEE, 94(8), 1571 (2006).   DOI   ScienceOn
21 B. A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher and H. Hu, "Photoacoustic characterization of carbon nanotube array thermal interfaces", J. Appl. Phys., 101, 054313 (2007).   DOI
22 R. Sprlak, J. Oplutil, D. Kalvar and P. Chlebis, "Design of experimental liquid heat sink for high power electronic", Proc. 14th International Conference Environment and Electrical Engineering (EEEIC), Krakow, 392 (2014).
23 E. Neubauer and P. Angerer, "Advanced Composite Materials with Tailored Thermal Properties for Heat Sink Applications", European Conference on Power Electronics and Applications, Aalborg, 1, IEEE (2007).
24 Y. Wang, S. Jones, A. Dai and G. Liu, "Reliability enhancement by integrated liquid cooling in power IGBT modules for hybrid and electric vehicles", Microelectronics Reliability. 권 호, 페이지? (2014).   DOI
25 P. Cova, N. Delmonte, F. Giuliani, M. Citterio, S. Latorre, M. Lazzaroni and A. Lanza, "Thermal optimization of water heat sink for power converters with tight thermal constraints", Microelectronics Reliability, 53, 1760 (2013).   DOI
26 E. Neubauer, P. Angerer and G. Korb, "Heat sink materials with tailored properties for thermal management", Proc. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, Wiener Neustadt, 272, IEEE (2005).