• 제목/요약/키워드: energy dependence

검색결과 1,076건 처리시간 0.03초

Copula 모형을 이용한 에너지 가격과 경제적 불확실성 사이의 의존관계 분석 (Analysis on the Dependence Structure between Energy Price and Economic Uncertainty Using Copula Model)

  • 김부권;최기홍;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제29권2호
    • /
    • pp.145-170
    • /
    • 2020
  • 본 연구는 에너지(석유, 천연가스, 석탄) 가격과 경제적(실물 및 금융) 불확실성 사이의 의존성 구조를 분석하였다. Copula 모형을 이용해 얻은 의존구조 분석 결과를 요약하면 다음과 같다. 첫째, 에너지 가격과 실물·금융 불확실성 조합의 적합한 모형을 살펴보면, 원유가격과 실물·금융 불확실성 조합은 BB7 copula 모형, 천연가스 가격과 실물·금융 불확실성 조합은 Joe copula 모형, 석탄 가격과 실물·금융 불확실성 조합은 Clayton copula 모형이 각각 가장 적합한 모형으로 선정되었다. 둘째, 전체적인 의존성 구조를 살펴보면, 원유가격, 천연가스 가격, 석탄 가격과 실물 불확실성은 양(+)의 의존성을 보였다. 그렇지만 금융 불확실성과 원유가격은 양(+)의 의존성을 갖지만, 천연가스 가격과 석탄 가격은 금융 불확성과 음(-)의 의존성을 가지는 것으로 나타났다. 전체적으로 보면, 에너지원 중 원유가격이 실물·금융 불확실성과 가장 높은 의존성을 가지는 것으로 나타났다. 셋째, 극단적인 사건을 나타내는 꼬리 의존성을 분석한 결과, 실물 불확실성과 원유, 천연가스 가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났으며, 금융 불확실성과 원유가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났다. 즉, 비대칭 관계를 갖는 에너지 가격은 부정적인 극단사건이 발생하는 경우 불확실성 변수와 강한 의존관계가 있는 것으로 나타났다. 반면, 경제적 불확실성과 석탄 가격은 꼬리 의존성이 없는 것으로 나타났다.

화학수송법으로 성장한 $Cd_4GeSe_{6}$$Cd_{4}GeSe_{6}$ : $CO^{2+}$ 단결정에서 에너지 띠 간격의 온도의존성 및 열역학함수 추정 (Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Sing1e Crystals by Chemical Transport Reaction Method)

  • 김남오;김형곤;김덕태;현승철;오금곤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권2호
    • /
    • pp.85-90
    • /
    • 2003
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were monoclinic structure. The temperature dependence of optical energy 9ap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

Study on visible emission of Cu-ion-doped perovskite hafnate in view of excitation energy dependence

  • Lee, D.J.;Lee, Y.S.;Noh, H.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권4호
    • /
    • pp.8-11
    • /
    • 2015
  • We studied on the visible emission of Cu-ion-doped perovskite hafnate $SrHfO_3$ (SHO:Cu) with the photo-excitation energy dependence. The polycrystalline SHO:Cu samples were newly synthesized in the solid state reaction method. From the X-ray diffraction measurement it was found that the crystalline structure of SHO:Cu is nearly identical to that of undoped $SrHfO_3$. Interestingly, the photoluminescence excitation (PLE) spectra change significantly with the emission energy, which is linked to the strong dependence of the visible emission on the photo-excitation energy. This unusual emission behavior is likely to be associated with the mixed valence states of the doped Cu ions, which were revealed by X-ray photoelectron spectroscopy. We compared our finding of tunable visible emission in the SHO:Cu compounds with the cases of similar materials, $SrTiO_3$ and $SrZrO_3$ with Cu-ion-doping.

화학수송법으로 성장한 $Cd_{4}GeSe_{6}$$Cd_{4}GeSe_{6}:Co$ 단결정에서 Energy Gap의 온도의존성 및 열역학함수 추정 (Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Single Crystals by Chemical Transport Reaction Method)

  • 김덕태;김남오;최영일;김병철;김형곤;현승철;김병인;송찬일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.31-36
    • /
    • 2002
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co$ single crystals were monoclinic structure. The temperature dependence of optical energy gap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

  • PDF

Progress of renewable energy in India

  • Kar, Sanjay Kumar;Gopakumar, K.
    • Advances in Energy Research
    • /
    • 제3권2호
    • /
    • pp.97-115
    • /
    • 2015
  • Energy holds key to economic growth and prosperity of India. Currently, India has very high-energy import dependence, especially in the case of crude oil (80%) and natural gas (40%). Even coal import has been increasing over the years. Considering India's population growth, emphasis on manufacturing, production, and service industry, energy consumption is bound to increase. More fossil energy consumption means greater dependence on energy import leading to widening trade deficit and current account deficit. Therefore, exploitation of indigenous renewable energy production is necessary. The paper reviews the progress and growth of renewable energy production, distribution, and consumption in India. The paper highlights some of the enablers of renewable energy in India. The authors discuss the opportunities and challenges of increasing share of renewable energy to reduce energy import and address issues of energy security in India. The findings suggest that India is ready for a quantum leap in renewable production by 2022.

$YFeO_3$ 박판 단결정의 자벽이동에 관한 연구 (A Study on the Wall Mobility of Magnetic Domain for the Singel Crystal $YFeO_3$)

  • 김종오;한관희
    • 한국세라믹학회지
    • /
    • 제23권4호
    • /
    • pp.47-54
    • /
    • 1986
  • Since the wall mobility of bubble magnetic materials havin g the large q (q=Kac/2$\pi$$M_s^2$) like a $YFeO_3$ has been found to be proportional to the wall energy theoretically crystallographical direction dependence of wall energy calculated by the basis on the spin configuration of the bubble wall which lies in the ac plane was compared with the crystallographical direction dependence of wall mobility which was measured by the experiment. The sample was a single crystal of $YFeO_3$ which was cut into plate normal to the C axis and polished t a thickness of about 60${\mu}{\textrm}{m}$ The measurement of the wall mobility was carried out by optical system using the magneto-optic Faraday effect. From the good agreement of the crystallographical direction dependence of wall mobility and will energy it was found that the spin configuration of the bubble wall suggested is fair.

  • PDF

Temperature Dependence of the Vibration-Vibration Energy Transfer in the Deexcitaion of NO(2) by NO(0)

  • Ree, Jong-Baik;Sohn, Chang-Kook;Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권6호
    • /
    • pp.449-453
    • /
    • 1987
  • The temperature dependence of the vibrational relaxation of NO(= 2) by NO(v = 0) has been investigated over the temperature range 100-3000 K. We have assumed that the deexcitation of NO(2) by NO(0) undergoes vibration-to-vibration (VV) energy exchange with the transfer of the energy mismatch ${\Delta}$E through rotation (R) and translation(T). The relaxation rate constants are calculated by solving the time-dependent Schrodinger equation. The sum of V-V, T, and V-V, R contributions shows very weak temperature dependence and is in reasonable agreement with observed data over the temperature range 300-3000 K.

Electrical Repulsive Energy between Two Cylindrical Particles with Finite Length: Configuration Dependence

  • Choi, Ju-Young;Dong, Hyun-Bae;Haam, Seung-Joo;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1131-1136
    • /
    • 2008
  • The electrical repulsive energy between two model cylinders was calculated by solving nonlinear Poission- Boltzmann (P-B) equation under Derjaguin approximation. Effects of the surface potential, Debye screening length, and configuration of cylinders on the repulsive interaction energy were examined. Due to the anisotropy of the shape of cylinder, the interaction repulsive energy showed dependence to the configuration of particles; cylinders aligned in end-to-end configuration showed largest repulsive energy and crossed particles had lowest interaction energy. The configuration effect is originated from the curvature effect of the interacting surfaces. The curved surfaces showed less repulsive energy than flat surfaces at the same interacting surface area. The configuration dependency of interaction energy agreed with the previous analytical solution obtained under the linearized P-B equation. The approach and results present in this report would be applicable in predicting colloidal behavior of cylindrical particles.

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.

구성 재료와 방사조도 특성에 따른 태양전지모듈의 최대출력 분석 (Analysis of Maximum Power Generation of Photovoltaic Module Depending on Constituent Materials and Incident Light Characteristics)

  • 강기환;김경수;박지홍;유권종;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we analyze the maximum power generation of photovoltaic(PV) module depending on constituent materials and incidence angle dependence of light. To verify characteristics of constituent materials, we made photovoltaic modules with 4 kinds of solar cells and textured glass according to fabrication method. To find the degree of the maximum power generation dependence on intensity of light, Solar Simulator is applied by changing angle of module and light intensity. Through this experiment, to obtain maximum power generation from limited PV modules, it is needed to fully understand constituent materials, fabrication method and dependence of incident light characteristics.