DOI QR코드

DOI QR Code

Electrical Repulsive Energy between Two Cylindrical Particles with Finite Length: Configuration Dependence

  • Choi, Ju-Young (Department of Chemical Engineering, Yonsei University) ;
  • Dong, Hyun-Bae (Department of Chemical Engineering, Yonsei University) ;
  • Haam, Seung-Joo (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Sang-Yup (Department of Chemical Engineering, Yonsei University)
  • Published : 2008.06.20

Abstract

The electrical repulsive energy between two model cylinders was calculated by solving nonlinear Poission- Boltzmann (P-B) equation under Derjaguin approximation. Effects of the surface potential, Debye screening length, and configuration of cylinders on the repulsive interaction energy were examined. Due to the anisotropy of the shape of cylinder, the interaction repulsive energy showed dependence to the configuration of particles; cylinders aligned in end-to-end configuration showed largest repulsive energy and crossed particles had lowest interaction energy. The configuration effect is originated from the curvature effect of the interacting surfaces. The curved surfaces showed less repulsive energy than flat surfaces at the same interacting surface area. The configuration dependency of interaction energy agreed with the previous analytical solution obtained under the linearized P-B equation. The approach and results present in this report would be applicable in predicting colloidal behavior of cylindrical particles.

Keywords

References

  1. Zareie, M. H.; Xu, X.; Cortie, M. B. Small 2007, 3, 139 https://doi.org/10.1002/smll.200600280
  2. Gole, A.; Orendorff, C. J.; Murphy, C. J. Langmuir 2004, 20, 7117 https://doi.org/10.1021/la049051q
  3. Lee, S.-W.; Mao, C.; Flynn, C. E.; Belcher, A. M. Science 2002, 296, 892 https://doi.org/10.1126/science.1068054
  4. Royston, E.; Lee, S.-Y.; Culver, J. M.; Harris, M. T. J. Coll. Interface Sci. 2006, 298, 706 https://doi.org/10.1016/j.jcis.2005.12.068
  5. Bhattacharjee, S.; Chen, J. Y.; Elimelech, M. Colloids Surfaces A 2000, 165, 143 https://doi.org/10.1016/S0927-7757(99)00448-3
  6. Halle, B. J. Chem. Phys. 1995, 102, 7338
  7. Yoon, B. J.; Kim, S. J. Coll. Interface Sci. 1989, 128, 275 https://doi.org/10.1016/0021-9797(89)90405-0
  8. Brenner, S. L.; McQuarrie, D. A. Biophys. J. 1973, 13, 301 https://doi.org/10.1016/S0006-3495(73)85987-9
  9. Parsegian, V. A.; Brenner, S. L. Nature 1976, 259, 632 https://doi.org/10.1038/259632a0
  10. Chapot, D.; Bocquet, L.; Trizac, E. J. Colloid Interface Sci. 2005, 285, 609 https://doi.org/10.1016/j.jcis.2004.11.059
  11. Hsu, J.-P.; Jiang, J.-M.; Tseng, S. Colloids Surfaces B 2003, 27, 49 https://doi.org/10.1016/S0927-7765(02)00039-5
  12. Harries, D. Langmuir 1998, 14, 3149 https://doi.org/10.1021/la971314b
  13. Ospeck, M.; Fraden, S. J. Chem. Phys. 1998, 109, 9166 https://doi.org/10.1063/1.477469
  14. Gu, Y. J. Coll. Interface Sci. 2000, 231, 199 https://doi.org/10.1006/jcis.2000.7110
  15. Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, U.S.A., 1997; p 502
  16. Deggelmann, M.; Graf, C.; Hagenbuchle, M.; Hoss, U.; Johner, C.; Kramer, H.; Martin, C.; Weber, R. J. Phys. Chem. 1994, 98, 364 https://doi.org/10.1021/j100052a058
  17. Lee, S.-Y.; Culver, J. N.; Harris, M. T. J. Coll. Interface Sci. 2006, 297, 554 https://doi.org/10.1016/j.jcis.2005.11.039
  18. Yang, S. M.; Park, O. O. Fundamentals of Microstructural Fluid Flow; Mineumsa: Seoul, Korea, 1997; p 405
  19. Hunter, R. J. Foundations of Colloid Science; Oxford: New York, U.S.A., 1989; p 191
  20. Israelachvili, J. Intermolecular and Surface Forces; Academic Press: London, U.K., 1991; p 161
  21. Hsu, J.-P.; Yu, H.-Y.; Tseng, S. J. Phys. Chem. B 2006, 110, 25007 https://doi.org/10.1021/jp062704m
  22. Hsu, J.-P.; Yu, H.-Y.; Tseng, S. J. Phys. Chem. B 2006, 110, 7600 https://doi.org/10.1021/jp060090f

Cited by

  1. Cosolvent Effects on the Spontaneous Formation of Nanorod Vesicles in Catanionic Mixtures in the Rich Cationic Region vol.115, pp.25, 2011, https://doi.org/10.1021/jp202199d
  2. Aggregation of Elongated Colloids in Water vol.33, pp.2, 2017, https://doi.org/10.1021/acs.langmuir.6b03962
  3. Sulfate-Mediated End-to-End Assembly of Gold Nanorods vol.33, pp.6, 2017, https://doi.org/10.1021/acs.langmuir.6b04114
  4. Electric-field-induced polarization and interactions of uncharged colloids in salt solutions vol.33, pp.1, 2010, https://doi.org/10.1140/epje/i2010-10656-5
  5. Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles vol.30, pp.3, 2008, https://doi.org/10.5012/bkcs.2009.30.3.567