Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.6.1131

Electrical Repulsive Energy between Two Cylindrical Particles with Finite Length: Configuration Dependence  

Choi, Ju-Young (Department of Chemical Engineering, Yonsei University)
Dong, Hyun-Bae (Department of Chemical Engineering, Yonsei University)
Haam, Seung-Joo (Department of Chemical Engineering, Yonsei University)
Lee, Sang-Yup (Department of Chemical Engineering, Yonsei University)
Publication Information
Abstract
The electrical repulsive energy between two model cylinders was calculated by solving nonlinear Poission- Boltzmann (P-B) equation under Derjaguin approximation. Effects of the surface potential, Debye screening length, and configuration of cylinders on the repulsive interaction energy were examined. Due to the anisotropy of the shape of cylinder, the interaction repulsive energy showed dependence to the configuration of particles; cylinders aligned in end-to-end configuration showed largest repulsive energy and crossed particles had lowest interaction energy. The configuration effect is originated from the curvature effect of the interacting surfaces. The curved surfaces showed less repulsive energy than flat surfaces at the same interacting surface area. The configuration dependency of interaction energy agreed with the previous analytical solution obtained under the linearized P-B equation. The approach and results present in this report would be applicable in predicting colloidal behavior of cylindrical particles.
Keywords
Electrical repulsion; Derjaguin approximation; Orientation; Cylinder
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Chapot, D.; Bocquet, L.; Trizac, E. J. Colloid Interface Sci. 2005, 285, 609   DOI   ScienceOn
2 Hsu, J.-P.; Jiang, J.-M.; Tseng, S. Colloids Surfaces B 2003, 27, 49   DOI   ScienceOn
3 Harries, D. Langmuir 1998, 14, 3149   DOI   ScienceOn
4 Yang, S. M.; Park, O. O. Fundamentals of Microstructural Fluid Flow; Mineumsa: Seoul, Korea, 1997; p 405
5 Hunter, R. J. Foundations of Colloid Science; Oxford: New York, U.S.A., 1989; p 191
6 Israelachvili, J. Intermolecular and Surface Forces; Academic Press: London, U.K., 1991; p 161
7 Lee, S.-Y.; Culver, J. N.; Harris, M. T. J. Coll. Interface Sci. 2006, 297, 554   DOI   ScienceOn
8 Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, U.S.A., 1997; p 502
9 Deggelmann, M.; Graf, C.; Hagenbuchle, M.; Hoss, U.; Johner, C.; Kramer, H.; Martin, C.; Weber, R. J. Phys. Chem. 1994, 98, 364   DOI   ScienceOn
10 Brenner, S. L.; McQuarrie, D. A. Biophys. J. 1973, 13, 301   DOI   ScienceOn
11 Parsegian, V. A.; Brenner, S. L. Nature 1976, 259, 632   DOI   ScienceOn
12 Zareie, M. H.; Xu, X.; Cortie, M. B. Small 2007, 3, 139   DOI   ScienceOn
13 Gu, Y. J. Coll. Interface Sci. 2000, 231, 199   DOI   ScienceOn
14 Gole, A.; Orendorff, C. J.; Murphy, C. J. Langmuir 2004, 20, 7117   DOI   ScienceOn
15 Yoon, B. J.; Kim, S. J. Coll. Interface Sci. 1989, 128, 275   DOI   ScienceOn
16 Ospeck, M.; Fraden, S. J. Chem. Phys. 1998, 109, 9166   DOI
17 Halle, B. J. Chem. Phys. 1995, 102, 7338
18 Hsu, J.-P.; Yu, H.-Y.; Tseng, S. J. Phys. Chem. B 2006, 110, 25007   DOI   ScienceOn
19 Hsu, J.-P.; Yu, H.-Y.; Tseng, S. J. Phys. Chem. B 2006, 110, 7600   DOI   ScienceOn
20 Bhattacharjee, S.; Chen, J. Y.; Elimelech, M. Colloids Surfaces A 2000, 165, 143   DOI   ScienceOn
21 Lee, S.-W.; Mao, C.; Flynn, C. E.; Belcher, A. M. Science 2002, 296, 892   DOI   ScienceOn
22 Royston, E.; Lee, S.-Y.; Culver, J. M.; Harris, M. T. J. Coll. Interface Sci. 2006, 298, 706   DOI   ScienceOn