• Title/Summary/Keyword: energy degradation

Search Result 1,725, Processing Time 0.034 seconds

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar;Ghatak, Himadri Roy
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.292-307
    • /
    • 2022
  • The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

The Degradation of the Effect of Drag Reduction in Synthetic Polymer Solution (합성고분자 첨가제에 의한 마찰저항감소효과의 퇴화에 관한 연구)

  • 윤석만;최형진;김종보
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.163-171
    • /
    • 1998
  • Degradation of polymer additives is enhanced at higher temperature of the test solutions. The degradation of Co-polymer solution was investigated experimentally in a closed loop at the temperature of 6$0^{\circ}C$ and 8$0^{\circ}C$ with various polymer concentrations of 100, 200, 400, 600 ppm in order to see the effect of temperature and polymer concentration with time. The degradation effect were found to be more dependent on temperature than mechanical shear. The friction factor versus Reynolds number curves show that in the range of Reynolds number number 50,000~150,000 the friction was decreased as Reynolds number increased and the friction of solution at low temperature approached to Virk's maximum drag reduction asymptote. For constant flowrates and temperatures the degradation effect was found to be less likely in higher polymer concentration. For constant flowrates and polymer concentrations the degradation rates are affected mainly by temperature. At the temperature of 8$0^{\circ}C$ and polymer concentration of 100 ppm, drag reduction effect was disappeared after 4 hours. However, this thermal degradation could be avoided with additional materials such as surfactants which are supposed to enhance the bonding forces between polymer molecules.

  • PDF

Lewis Acid Degradation Characteristics of Perfluoropolyethers Derivatives (퍼프로로폴리에테르 유도체의 루이스 산 분해특성)

  • Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.650-655
    • /
    • 2014
  • The degradation characteristics of perfluoropolyether (PFPE) derivatives currently being used as computer hard disk lubricants have been investigated. Especially, we considered the effects of end group on degradation behavior of PFPE derivatives. It was found that the degradation of PFPE derivatives in the presence of $Al_2O_3$ involves two degradation mechanisms such as thermal degradation and Lewis acid disproportionation by $AlF_3$ which was mainly formed by oxide-to-halide reaction between $Al_2O_3$ and the degraded PFPE. The end groups were strongly related to Lewis acid disproportionation of PFPE derivatives, and it is due to the difference of electron donating ability in the each end groups. Even if PFPE derivatives have same repeating unit in the main chain, Lewis acid disproportionation was prohibited by higher electron donating ability by the end group which caused the high electron density at the acetal group in the repeating unit.

The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives (계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구)

  • 이동민;김남진;윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

A Study on the Flow Characteristics around Tidal Current Turbine (조류발전용 터빈 주위의 유동 특성에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.610-616
    • /
    • 2012
  • All the countries in the world is currently facing the full scale of energy-climate era currently, and making strong energy policy that will lead to green growth of the future energy resources by utilizing renewable energy as the basis of entering the advanced country becomes the goal of development that satisfies the demand for energy in 21st century. Recently, ocean energy attracted the attention along with the necessity of developing renewable energy. Ocean energy is the one of most prominent recyclable and clean resources that has not been developed yet. So, it is highly required to develop good tidal current energy conversion system in coastal area. The inflow angle that acts against tidal current turbine, seabed effect and the change of efficiency along the occurrence of cavitation were investigated through the wake flow characteristics in this study. Power coefficient degradation by seabed effect did not appear in the condition of this calculation. Efficiency degradation appeared from above $10^{\circ}$ regarding inflow angle and power coefficient was calculated as lower by 7 % at $45^{\circ}$. Torque and power coefficient increased as inflow velocity rose, but power coefficient degradation appeared from above 3m/s when the cavitation happened. So, it was recognized that the larger inflow angle and occurrence of cavitation become the reason for power degradation through the flow characteristics.

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung;Yong Seok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

Improved Understanding of LeTID of Single-crystalline Silicon Solar Cell with PERC

  • Kim, Kwanghun;Baik, Sungsun;Park, Jaechang;Nam, Wooseok;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.94-101
    • /
    • 2018
  • Light elevated temperature induced degradation (LeTID) was noted as an issue in multi-crystalline silicon solar cells (MSSC) by Ram speck in 2012. In contrast to light induced degradation (LID), which has been researched in silicon solar cells for a long time, research about both LeTID and the mechanism of LeTID has been limited. In addition, research about LeTID in single-crystalline silicon solar cells (SSSC) is even more limited. In order to improve understanding of LeTID in SSSC with a passivated emitter rear contact (PERC) structure, we fabricated four group samples with boron and oxygen factors and evaluated the solar cell characteristics, such as the cell efficiency, $V_{oc}$, $I_{sc}$, fill factor (FF), LID, and LeTID. The trends of LID of the four group samples were similar to the trend of LeTID as a function of boron and oxygen.

A CONSIDERATION OF THERMODYNAMIC ASPECTS OF WEAR: ENERGY AND ENTROPY

  • Ling, F.F.;Bryant, M.D.;Doelling, K.L.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.219-220
    • /
    • 2002
  • To establish a thermodynamic basis for degradation, a hypothesis was made on the potential correlation between entropy and degradation for wear of machinery components. This paper reports an experimental study of wear of model machinery component pairs, on an accelerated testing basis. Measured were wear, friction, temperatures, and entropy flow. Results show a strong correlation between the referenced wear and the production of entropy flow. The hypothesis linking wear to entropy led to formulations consistent with the Archard/Holm wear law.

  • PDF

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.204-207
    • /
    • 2012
  • Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.