• Title/Summary/Keyword: energy constraint

Search Result 332, Processing Time 0.027 seconds

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

Analysis on a Power Transaction with Fuel-Constrained Generations in an Electricity Market (연료제약 발전기를 고려한 전력거래 해석기법 연구)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.484-489
    • /
    • 2004
  • When the energy resource available to a particular plant (be it coal, oil, gas, water, or nuclear fuel) is a limiting factor in the operation of the plant, the entire economic dispatch calculation must be done differently. Each economic dispatch calculation must account for what happened before and what will happen in the future. This paper presents a formulation and a solution method for the optimization problem with a fuel constraint in a competitive electricity market. Take-or- Pay (TOP) contract for an energy resource is the typical constraint as a limiting factor. Two approaches are proposed in this paper for modeling the dispatch calculation in a market mechanism. The approaches differ in the subject who considers and inserts the fuel-constraint into its optimization problem. Market operator and each power producer having a TOP contract are assumed as such subjects. The two approaches are compared from the viewpoint of profits. surplus. and social welfare on the basis of Nash Equilibrium.

A New Constraint Handling Method for Economic Dispatch

  • Li, Xueping;Xiao, Canwei;Lu, Zhigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1099-1109
    • /
    • 2018
  • For practical consideration, economic dispatch (ED) problems in power system have non-smooth cost functions with equality and inequality constraints that makes the problems complex constrained nonlinear optimization problems. This paper proposes a new constraint handling method for equality and inequality constraints which is employed to solve ED problems, where the incremental rate is employed to enhance the modification process. In order to prove the applicability of the proposed method, the study cases are tested based on the classical particle swarm optimization (PSO) and differential evolution (DE) algorithm. The proposed method is evaluated for ED problems using six different test systems: 6-, 15-, 20-, 38-, 110- and 140-generators system. Simulation results show that it can always find the satisfactory solutions while satisfying the constraints.

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

Investigation into Crack-Tip Constraint of Curved Wide-Plate using Q-Stress (Q-응력을 이용한 휜 광폭평판 균열부 구속상태 변화 평가)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Kim, Ki-Seok;Shim, Sang-Hoon;Cho, Woo-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1441-1446
    • /
    • 2014
  • In the present paper, the effects of the thickness and width of a curved wide-plate, the crack length, and the strain hardening exponent on the crack-tip constraint of the curved wide-plate were investigated. To accomplish this, detailed three-dimensional elastic-plastic finite element (FE) analyses were performed considering various geometric and material variables. The material was characterized by the Ramberg-Osgood relationship, and the Q-stress was employed as a crack-tip constraint parameter. Based on the present FE results, the variations in the Q-stress of the curved wide-plate with the geometric variables and material properties were evaluated. This revealed that the effect of out-of-plane constraint conditions on the crack-tip constraint was closely related to the in-plane constraint conditions, and out-of-plane constraint conditions affected the crack-tip constraint more than in-plane constraint conditions.

Low-power Scheduling Framework for Heterogeneous Architecture under Performance Constraint

  • Li, Junke;Guo, Bing;Shen, Yan;Li, Deguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2003-2021
    • /
    • 2020
  • Today's computer systems are widely integrated with CPU and GPU to achieve considerable performance, but energy consumption of such system directly affects operational cost, maintainability and environmental problem, which has been aroused wide concern by researchers, computer architects, and developers. To cope with energy problem, we propose a task-scheduling framework to reduce energy under performance constraint by rationally allocating the tasks across the CPU and GPU. The framework first collects the estimated energy consumption of programs and performance information. Next, we use above information to formalize the scheduling problem as the 0-1 knapsack problem. Then, we elaborate our experiment on typical platform to verify proposed scheduling framework. The experimental results show that our proposed algorithm saves 14.97% energy compared with that of the time-oriented policy and yields 37.23% performance improvement than that of energy-oriented scheme on average.

Robust Energy Efficiency Power Allocation for Uplink OFDM-Based Cognitive Radio Networks

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.506-509
    • /
    • 2014
  • This paper studies the energy efficiency power allocation for cognitive radio networks based on uplink orthogonal frequency-division multiplexing. The power allocation problem is intended to minimize the maximum energy efficiency measured by "Joule per bit" metric, under total power constraint and robust aggregate mutual interference power constraint. However, the above problem is non-convex. To make it solvable, an equivalent convex optimization problem is derived that can be solved by general fractional programming. Then, a robust energy efficiency power allocation scheme is presented. Simulation results corroborate the effectiveness of the proposed methods.

Compliant Mechanism Design with Displacement Constraint (변위구속조건을 고려한 컴플라이언트 메커니즘 설계)

  • Kim, Yeong-Gi;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1779-1786
    • /
    • 2002
  • When the topology optimization is applied to the design of compliant mechanism, unexpected displacements of input and output port are generated since the displacement control is not included in the formulation. To devise a more precise mechanism, displacement constraint is formulated using the mutual potential energy concept and added to multi-objective function defined with flexibility and stiffness of a structure. The optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanism with displacement constraint are presented to validate the proposed design method.

Extension of Field-Consistency to Plane Strain Elements (일관장 개념의 평면변형률 요소에의 확장)

  • 김용우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1799-1809
    • /
    • 1995
  • The applicability of the field-consistency paradigm, which was originally employed for analysis of locking due to constrained energy having the second power of a strain, is extended to the constrained energy having a quadratic form of strain. For the extension, nearly-incompressible plane strain problem is considered by introducing the concept of reduced minimization. The field-consistent analysis of the plane strain problem leads to a clear and systematic understanding on the relation amongst constraints imposed on element, spurious constraint -free optimal points, and integration order used.