• Title/Summary/Keyword: energy constraint

Search Result 332, Processing Time 0.025 seconds

Resource Allocation for Relay-Aided Cooperative Systems Based on Multi-Objective Optimization

  • Wu, Runze;Zhu, Jiajia;Hu, Hailin;He, Yanhua;Tang, Liangrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2177-2193
    • /
    • 2018
  • This paper studies resource allocation schemes for the relay-aided cooperative system consisting of multiple source-destination pairs and decode-forward (DF) relays. Specially, relaying selection, multisubcarrier pairing and assignment, and power allocation are investigated jointly. We consider a combinatorial optimization problem on quality of experience (QoE) and energy consumption based on relay-aided cooperative system. For providing better QoE and lower energy consumption we formulate a multi-objective optimization problem to maximize the total mean opinion score (MOS) value and minimize the total power consumption. To this end, we employ the nondominated sorting genetic algorithm version II (NSGA-II) and obtain sets of Pareto optimal solutions. Specially, two formulas are devised for the optimal solutions of the multi-objective optimization problems with and without a service priority constraint. Moreover, simulation results show that the proposed schemes are superior to the existing ones.

A New Probabilistic Generation Simulation Considering Hydro, Pumped-Storage Plants and Multi-Model (수력,양수 및 다중모델을 고려한 새로운 확률론적 발전시뮬레이션)

  • 송길영;최재석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.551-561
    • /
    • 1991
  • The probabilistic generation simulation plays a key role in power system expansion and operational planning especially for the calculation of expected energy, loss of load probaility and unserved energy expected. However, it is crucial to develop a probabilistic generation simulation algorithm which gives sufficiently precise results within a reasonable computation time. In a previous paper, we have proposed an efficent method using Fast Hartley Transform in convolution process for considering the thermal and nuclear units. In this paper, a method considering the scheduling of pumped-storage plants and hydro plants with energy constraint is proposed. The method also adopts FHT techniques. We improve the model to include multi-state and multi-block generation. The method has been applied for a real size model system.

  • PDF

Mixture Design and Its Application in Cement Solidification for Spent Resin

  • Gan, Xueying;Lin, Meiqing;Chen, Hui
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.28-41
    • /
    • 2004
  • The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots.

  • PDF

A Train Performance Simulation using Simulink for Generating Energy-efficient Speed Profiles (에너지 효율적인 속도 프로파일 생성을 위한 Simulink 기반 열차 성능 시뮬레이션)

  • Kang, Moon-Ho;Han, Moon-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1816-1822
    • /
    • 2010
  • In this research TPS (Train Performance Simulation) blocks are designed using Simulink and applied to generate speed profiles for energy-efficient train operation. With a train operation mode of maximum powering, coasting, and maximum breaking, a breaking point is calculated from forward-backward running profiles. Then, GA (Genetic Algorithm) is used to solve a running time constraint, and a coasting point is produced from the searching process of GA. With the breaking point and the coasting point a speed profile is plotted. Train performance under a speed limit and gradient variations is simulated and resultant speed profiles are analyzed.

The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle (알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계)

  • 김정호;김범진;허승진;김민수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

An Energy Efficient Routing Scheme with Tabu Search Algorithm (타부 탐색 알고리즘을 적용한 전력 효율적 라우팅 기법)

  • Yan, Shi;Hong, Won-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2011
  • Wireless sensor network (WSN) is a distributed self-organizing network which contains a large number of tiny multi-functional sensor nodes. The network life time is an important issue in WSN because every sensor node has a constraint on electric supply. In this paper, an energy consumption model is described and a GA-based algorithm will be used to optimize the energy consumption by analyzing the working model of sensor nodes. The model will provide an effective reference of working pattern for WSN. This algorithm is evaluated through analysis and simulations.

  • PDF

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors (다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

A Study of Optimal Distribution of Gas Temperature in Directly-Fired Reheating Furnace (직접 가열식 가열로 내 최적 분위기온도 분포 해석에 관한 연구)

  • Jeong, Eui-Soo;Shim, Sung-Min;Kim, Young-Deuk;Kang, Deok-Hong;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2122-2125
    • /
    • 2008
  • Because the reheating furnace consumes a large amount of energy to heat up the slabs, it is very important to find an optimal temperature patterns in the furnace for energy saving as well as uniform target temperature at the exit of the furnace. In this study, the temperature profiles in the slab are determined by solving the transient one-dimensional heat conduction equation in conjunction with boundary conditions with total heat exchange factors. The optimal temperature patterns are obtained to minimize the fuel consumption with satisfying the predetermined constraint conditions. The design optimization is performed by using a genetic algorithm and the optimal results are validated with results obtained from the PIDO tool, called as P.I.A.n.O.

  • PDF

A Novel Approach for the Unit Commitment with Vehicle-to-grid

  • Jin, Lei;Yang, Huan;Zhou, Yuying;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.367-374
    • /
    • 2013
  • The electrical vehicles (EV) with vehicle-to-grid (V2G) capability can be used as loads, energy sources and energy storage in MicroGrid integrated with renewable energy sources. The output power of generators will be reallocated in the considering of V2G. An intelligent unit commitment (UC) with V2G for cost optimization is presented in this paper. A new constraint of UC with V2G is considered to satisfy daily use of EVs. A hybrid optimiza-tion algorithm combined Binary Particle Swarm Optimization (BPSO) with Lagrange Mul-tipliers Method (LMM) is proposed. The difference between results of UC with V2G and UC without V2G is presented.