• Title/Summary/Keyword: energy company

Search Result 814, Processing Time 0.023 seconds

NOVEL TECHNIQUE TO PRODUCE HYBRID P/M COMPONENTS USING DISSIMILAR FERROUS ALLOYS

  • MIN CHUL OH;HYUNJOO SEOK;YEONGCHEOL JO;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.613-616
    • /
    • 2019
  • The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120℃ for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.

Electrochemical and Sludge Dissolution Behavior During a Copper Removal Process for Chemical Cleaning on the Secondary Side of Nuclear Steam Generators (원전 증기발생기 2차측 화학세정을 위한 제동공정중의 전기화학적 거동 및 슬러지용해 거동)

  • Hur, Do-Haeng;Chung, Han-Sub;Kim, Uh-Chul;Chae, Sung-Ki;Park, Kwang-Kyoo;Kim, Jae-Pyong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.154-162
    • /
    • 1992
  • Two major goals for chemical cleaning on the secondary side of nuclear steam generators are to remove sludge effectively and to minimize corrosion of base metals. In this work, electrochemical and sludge dissolution behaviors have been investigated in order to find out which parameters are critical and important during a copper removal process for chemical cleaning and to evaluate safety aspects and effectiveness of two major copper removal processes developed commercially in foreign countries. Hydrogen peroxide is vert effective for the process to use EDTA, NH$_4$OH and EDA at 38$^{\circ}C$ to control the potential of copper in a potential range sood for copper sludge removal. Corrosion rates for carbon steel SA 285 Gr.C and Alloy 600 are very small during this process if it is controlled properly. However, the corrosion rate of SA 285 Gr.C will be increased greatly if its corrosion potential is maintained below -450mV. The process to use EDA and ammonium carbonate is effective at 6$0^{\circ}C$ to dissolve copper sludge if the corrosion potential of copper can be controlled above -200mV. However, it is very difficult to raise the corrosion potential of copper to this range by air blowing and stirring.

  • PDF

Modeling of the Cycle Life of a Lithium-ion Polymer Battery (리튬 이온 폴리머 전지의 사이클 수명 모델링)

  • Kim, Ui Seong;Lee, Jungbin;Yi, Jaeshin;Shin, Chee Burm;Choi, Je Hun;Lee, Seokbeom
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.344-348
    • /
    • 2009
  • One-dimensional modeling was carried-out to predict the capacity loss of a lithium-ion polymer battery during cycling. The model not only accounted for electrochemical kinetics and ionic mass transfer in a battery cell, but also considered the parasitic reaction inducing the capacity loss. In order to validate the modeling, modeling results were compared with the measurement data of the cycling behaviors of the lithium-ion polymer batteries having nominal capacity of 5Ah from LG Chem. The cycling was performed under the protocol of the constant current discharge and the constant current and constant voltage charge. The discharge rate of 1C was used. The range of state of charge was between 1 and 0.2. The voltage was kept constant at 4.2 V until the charge current tapered to 50 mA. The retention capacity of the battery was measured with 1C and 5C discharge rates before the beginning of cycling and after every 100 cycles of cycling. The modeling results were in good agreement with the measurement data.

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery (차량용 12-V 납축전지의 충·방전 모델링)

  • Kim, Ui Seong;Jeon, Sehoon;Jeon, Wonjin;Shin, Chee Burm;Chung, Seung Myun;Kim, Sung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of $25^{\circ}C$. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.

Cross Calibration of Dual Energy X-ray Absorptiometry Equipment for Diagnosis of Osteoporosis: between Domestic Manufacturers and Global Manufacturers (골밀도 장치의 교차분석 ; 국내 제조사와 해외 제조사 비교)

  • Kim, Jung-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.833-844
    • /
    • 2018
  • Dual energy X-ray absorptiometry is mainly used as an X-ray test method. For equipment manufactured GE and Hologic, cross-calibration analyses (CCA) of machines from the same manufacturer and between units from different manufacturers have been conducted, but the CCA of equipment manufactured in Korea are inadequate. Through CCA, we present a formula of the intersections between the Korean medical equipment company (KEC) with GE and Hologic manufactured DXA, and among the KEC DXA. The CCA was conducted for the European Spine Phantom on DXA from four KEC and three global medical equipment company (GEC) manufacturers. We compared bone mineral density (BMD) values and calculated the CCA equation by linear regression analysis. The standard-deviations (SD) of the BMD values were highest for the Dexxum T for the low, medium, and high spine, which were 0.030, 0.029, and 0.037, respectively. The smallest SD in the low and medium vertebrae were 0.005 and 0.004 for the Horizon Ci, respectively, and 0.005 for the Osteo Pro Max in the high vertebrae. Based on the intersection equations of the KEC DXA established in this study, CCA of various KEC DXA should be established for more accurate follow-up of BMD tests in clinical environments.

A Study on Ignition Hazard Caused by Electrostatic Discharge of Gasoline Used in the Gas Station (주유소에서 사용하는 휘발유의 정전기 방전으로 인한 점화위험성에 관한 연구)

  • Moon, Kyoon-Tae;Chung, Jae-Hee;Mizuki, Yamaguma;Choi, Kwang-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • To investigate electrostatic ignition hazards of commercial gasoline used in the gas station, experiments were conducted dealing with the minimum ignition energy(MIE) of several kinds of gasoline under the various temperature. The conductivity of gasoline that was required for an accurate risk assessment as well as the MIE were also examined. The solvent ignitability apparatus which can heat up the inside of the vessels up to $210^{\circ}C$ was used in this study. Four kinds of premium gasoline and four kinds of regular gasoline, differing with respect to the companies, were used as test specimens. The following results were obtained: (1) all gasoline specimens were so sensitive that even an electrostatic discharge with a very low energy, such as about 0.5mJ, could ignite them. The ignitability of premium gasoline was constant irrespective of the companies. On the other hand, the ignitability of regular gasoline was variable depending on the company. (2) The MIE of all specimens depended markedly on the temperature; in other words, an increase in temperature decreases the ignition energy value. (3) The conductivity values of all specimens were low. Those must be taken into consideration in electrostatic risk assessment.

Establishment of Document Control System for the Jordan Research and Training Reactor Project (요르단연구로건설사업 문서관리시스템 구축)

  • Park, Kook-Nam;Ko, Young-Cheol;Wu, Sang-Ik;Oh, Soo-Youl;Lee, Doo-Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.49-56
    • /
    • 2011
  • The Project of Jordan Research and Training Reactor (JRTR) officially launched in Aug. 2010. JRTR is the first made-in-Korea nuclear system to be built abroad by year 2015, and Korea Atomic Energy Research Institute (KAERI) is responsible for the design of major systems including the reactor core. While the PDCS (Project Document Control System) being operated by EPC company controls all the documents of the whole Project, KAERI is supposed to have its own system for KAERI documents. Meeting such a need; KAERI has implemented a document control for the JRTR Project into already existing ANSIM (KAERI Advanced Nuclear Safety Information Management) system. The documents of JRTR project to be controlled are defined in the PPM (Project Procedures Manual), QAP (Quality Assurance Procedure) and PEP (Project Execution Program). The ANSIM consists of the document management holder, document container holder and organization management holder. The document management holder, which is the most important part of ANSIM-JRTR, consists of the DDA (Document Distribution for Agreement), IOC (Inter-office Correspondence), PM Memo. (Project Manager Memorandum) and cover sheets of design documents. Other materials such as meeting minutes, sub-department materials and design information materials are stored in an independent COP (Community of Practice). This established computerized document control system, ANSIM, could lessen a burden for project management team and enhance the productivity as well.

Investigation of 0.5 MJ superconducting energy storage system by acoustic emission method.

  • Miklyaev, S.M.;Shevchenko, S.A.;Surin, M.I.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.961-965
    • /
    • 1998
  • The rapid development of small-scale (1-10 MJ) Superconducting Magnetic Energy Storage Systems (SMES) can be explained by real perspective of practical implementation of these devices in electro power nets. However the serious problem of all high mechanically stressed superconducting coils-problem of training and degradation (decreasing) of operating current still exists. Moreover for SMES systems this problems is more dangerous because of pulsed origin of mechanical stresses-one of the major sources of local heat disturbances in superconducting coils. We investigated acoustic emission (AE) phenomenon on model and 0.5 MJ SMES coils taking into account close correlation of AE and local heat disturbances. Two-coils 0.5 MJ SMES system was developed, manufactured and tested at Russian Research Center in the frames of cooperation with Korean Electrical Engineering Company (KEPCO) [1]. The two-coil SMES operates with the stored energy transmitted between coils in the course of a single cycle with 2 seconds energy transfer time. Maximum operating current 1.55 kA corresponds to 0.5 MF in each coil. The Nb-Ti-based conductor was designed and used for SMES manufacturing. It represents transposed cable made of Nb-Ti strands in copper matrix, several cooper strands and several stainless steel strands. The coils are wound onto fiberglass cylindrical bobbins. To make AE event information more useful a real time instrumentation system was used. Two main measured and computer processed AE parameters were considered: the energy of AE events (E) and the accumulated energy of AE events (E ). Influence of current value in 0.5 MJ coils on E and E was studied. The sensors were installed onto the bobbin and the external surface of magnets. Three levels of initial current were examined: 600A, 1000A, 2450 A. An extraordinary strong dependence of the current level on E and E was observed. The specific features of AE from model coils, operated in sinusoidal vibration current changing mode were investigated. Three current frequency modes were examined: 0.012 Hz, 0.03 Hz and 0.12 Hz. In all modes maximum amplitude 1200 A was realized.

  • PDF

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire×Jiaxing and Landrace×Yorkshire

  • Zhao, Jinbiao;Wang, Qiuyun;Liu, Ling;Chen, Yiqiang;Jin, Aiming;Liu, Guoliang;Li, Kaizhen;Li, Defa;Lai, Changhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.721-728
    • /
    • 2018
  • Objective: This experiment was conducted to determine the differences in the apparent ileal (AID) and total tract digestibility (ATTD) of nutrients and indispensable amino acids (IAA) in high-fiber diets with wheat middlings, rice bran or alfalfa meal fed to Duroc${\times}$(Landrace${\times}$Yorkshire) (DLY) and Duroc${\times}$ (Berkshire${\times}$Jiaxing) (DBJ) growing barrows. Methods: Eighteen DLY and 18 DBJ growing barrows were randomly allotted to a $2{\times}3$ factorial arrangement involving 2 crossbreeds and 3 high-fiber diets. The experiment lasted 15 d with 10 d for diets adaptation, 3 d for feces collection and 2 d for digesta collection. Three diets were based on corn and soybean meal with 25% wheat middlings, rice bran and alfalfa meal respectively. Results: DBJ had a greater (p<0.05) AID of isoleucine, leucine, lysine, phenylalanine and valine and a lower (p<0.05) AID of methionine than DLY. The hindgut disappearance of acid detergent fiber for DBJ was greater (p<0.05) than DLY. The ATTD of gross energy, dry matter, organic matter, neutral detergent fiber and acid detergent fiber in wheat middlings diet were greater (p<0.05) than in rice bran and alfalfa meal diets. The hindgut disappearance of neutral detergent fiber and acid detergent fiber in wheat middlings diet or rice bran diet were the highest or lowest (p<0.05), and those of alfalfa meal diet were the middle. Barrows fed rice bran diet had a greater (p<0.05) hindgut disappearance of gross energy, dry matter and organic matter and lower hindgut disappearance of neutral detergent fiber and acid detergent fiber than barrows fed alfalfa meal diet Conclusion: DBJ growing barrows showed a significant higher digestibility of fiber in the hindgut and most IAA in the small intestine compared with DLY barrows. The digestibilities of chemical constituents and IAA were affected by the diets formulated with different fiber sources.