• Title/Summary/Keyword: energy cloud

Search Result 350, Processing Time 0.024 seconds

Analysis of cloud cover and solar irradiance of typical meteorological data (표준기상데이터의 운량과 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.330-335
    • /
    • 2009
  • kDomestic studies on meteorologicaldata have been carried out, however they were mostly not constant but limited to fragment compilation. The studies on solar energy, among others, have been relatively active but the measurement of solar irradiance is also limited to some extent. This study, in an effort to identify the difference in data between solar radiance and cloud cover, was intended to compare and analyze the typical meteorological data developed by Korean Solar Energy Society with the solar irradiance calculated using the typical meteorological data and cloud cover data provided by current simulation program. Monthly average solar irradiance from the meteorological data (ISO TRY) of Korea's typical meteorological data which was actuallymeasured appeared to be far below the monthly solar irradiance from the American Department of Energy. The solar irradiance calculated based on cloud cover indicates very limited difference between the two data, so the solar irradiance measured by Korean typical metrologicaldata (ISO TRY) indicated the similar value, which demonstrates the solar irradiance data from Korean Meteorological Administration is more accurate than those US National Weather Center.

  • PDF

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

Analysis of Long-wave Radiation Characteristics According to Atmospheric Conditions in Daegu Area During Summer (하절기 대구지역의 대기상태에 따른 장파복사 특징 분석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.1-9
    • /
    • 2018
  • The purpose of this study is to analyze the urban heat island ultimately by analyzing long-wave radiation which is the dominant factor of night minimum temperature formation. We observed during two months with four elements which is long and short wave radiation, temperature, relative humidity. And we analyzed the correlation between the four factors of long-wave radiation, temperature, cloud form, and cloud amount during the summer two months on the night time. Observations were carried out at two sites in Daegu and nearby. The results are as follows. (1) Long-wave radiation change per $1^{\circ}C$ in summer was larger than winter. (2) Long-wave radiation amount is affected by temperature change when the amount of cloud is small. (3) Low cloud was analyzed to have more influence on long-wave radiation than high cloud.

a Study on the Hands-on Education and the Out-of-School Education of the Nuclear Energy Using the Cloud Chamber in the Science Museum (과학관에서 안개상자를 활용한 원자력 체험교육 및 학교밖 교육에 관한 연구)

  • Oh, Kyu-Jin;Hong, Daegil
    • Korea Science and Art Forum
    • /
    • v.6
    • /
    • pp.67-78
    • /
    • 2010
  • The purpose of this study was to examine the educational methods and the educational effects using the cloud chamber in order to help young people to understand the nuclear energy and the ionizing radiation. In this study, we surveyed not only the history and the value of the cloud chamber as an hands-on exhibit in the science museum, but the case study on the nuclear hands-on education and the nuclear out-of-school education using the cloud chamber. And we analysed the satisfaction degree of participants in the out-of-school education using the cloud chamber in the science museum.

A Study on the Estimating Solar Radiation in Korea Using Cloud Cover and Hours of Bright Sunshine (국내 운량과 일조시간에 의한 태양광에너지 예측에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • It is necessary to estimate the regression coefficients in order to predict the daily global radiation on a horizontal surface. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for 16 different areas over Korea by estimating the regression coefficients taking into account cloud hours of bright sunshine. Particularly, the multiple linear regression model proposed shows reliable results for estimating the global radiation on a horizontal surface with monthly average deviation of-0.26 to +0.53% and each station annual average deviation of -1.61 to +1.7% from measured values.

Energy-Efficient Algorithm for Assigning Verification Tasks in Cloud Storage

  • Xu, Guangwei;Sun, Zhifeng;Yan, Cairong;Shi, Xiujin;Li, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Mobile Cloud Computing has become a promising computing platform. It moves users' data to the centralized large data centers for users' mobile devices to conveniently access. Since the data storage service may not be fully trusted, many public verification algorithms are proposed to check the data integrity. However, these algorithms hardly consider the huge computational burden for the verifiers with resource-constrained mobile devices to execute the verification tasks. We propose an energy-efficient algorithm for assigning verification tasks (EEAVT) to optimize the energy consumption and assign the verification tasks by elastic and customizable ways. The algorithm prioritizes verification tasks according to the expected finish time of the verification, and assigns the number of checked blocks referring to devices' residual energy and available operation time. Theoretical analysis and experiment evaluation show that our algorithm not only shortens the verification finish time, but also decreases energy consumption, thus improving the efficiency and reliability of the verification.

Solar Radiation Estimation Using Cloud Cover and Percentage of Possible Sunshine (운량과 일조율에 의한 일사예측)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.67.2-67.2
    • /
    • 2011
  • It is necessary to estimate empirical constants in order to predict the monthly mean daily global radiation on a horizontal surface in the developing areas for alternative energy. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for any areas over Korea by calculating the regression models taking into account latitude, percentage of possible sunshine, and cloud cover. From the results, the single linear equation proposed by using percentage of possible sunshine method shows reliable results for estimating the global radiation with average annual deviation of -3.1 to +0.6 % from measured values.

  • PDF

Implementation of Linux Virtual Server Load Balancing in Cloud Environment (클라우드 환경에서 Linux Virtual Server 로드밸런싱 구현)

  • Seo, Kyung-Seok;Lee, Bon-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.793-796
    • /
    • 2012
  • Recently adoption of the Green IT is regarded as an essential element in order to decrease server heat and save energy in data center because of continuous increase of energy consumption and energy price. Consequently the conventional IT infrastructure is replaced with cloud computing platform. In this paper, we have implemented a Linux virtual server load balancing in open source-based cloud platform and the performance of the LVS load balancing is analyzed.

  • PDF

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.