• Title/Summary/Keyword: energy cloud

Search Result 349, Processing Time 0.029 seconds

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

Analysis of of Horizontal Global Radiation and Cloud Cover in Korea (국내 수평면 전일사량과 운량 분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124-129
    • /
    • 2011
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar energy system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982.12~2008.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

  • PDF

Energy Efficient Software Development Techniques for Cloud based Applications

  • Aeshah A. Alsayyah;Shakeel Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.119-130
    • /
    • 2023
  • Worldwide organizations use the benefits offered by Cloud Computing (CC) to store data, software and programs. While running hugely complicated and sophisticated software on cloud requires more energy that causes global warming and affects environment. Most of the time energy consumption is wasted and it is required to explore opportunities to reduce emission of carbon in CC environment to save energy. Many improvements can be done in regard to energy efficiency from the software perspective by considering and paying attention on the energy consumption aspects of software's that run on cloud infrastructure. The aim of the current research is to propose a framework with an additional phase called parameterized development phase to be incorporated along with the traditional Software Development Life cycle (SDLC) where the developers need to consider the suggested techniques during software implementation to utilize low energy for running software on the cloud and contribute in green computing. Experiments have been carried out and the results prove that the suggested techniques and methods has enabled in achieving energy consumption.

Study on Enhancement of Data Processing Algorithm in SaaS Cloud Infrastructure to Monitor Wind Turbine Condition (풍력발전기 상태 감시를 위한 SaaS 클라우드 인프라 내 데이터 처리 알고리즘 개선 연구)

  • Lee, Gwang-Se;Choi, Jungchul;Kang, Minsang;Park, Sail;Lee, JinJae
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • In this study, an SW for the analysis of the wind-turbine vibration characteristics was developed as an application of SaaS cloud infrastructure. A measurement system for power-performance, mechanical load, and gearbox vibration as type-test class was installed at a target MW-class wind turbine, and structural meta and raw data were then acquired into the cloud. Data processing algorithms were developed to provide cloud data to the SW. To operate the SW continuously, raw data was downloaded consistently based on the algorithms. During the SW test, an intermittent long time-delay occurred due to the communication load associated with frequent access to the cloud. To solve this, a compression service for the target raw data was developed in the cloud and more stable data processing was confirmed. Using the compression service, stable big data processing of wind turbines, including gearbox vibration analysis, is expected.

A Detail Survey of Horizontal Global Radiation and Cloud Cover for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 운량 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982. 12~2008. 12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61\;kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

A Case Study of Green Ambience through Green Cloud Computing

  • Kumar, Rethina;Kang, Jeong-Jin
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • Green cloud computing refers to the green ambient benefits that information technology services delivered over the Internet can offer for the society. The green meaning environment friendly and cloud computing is a traditional symbol for the Internet and a type of service provider. Cloud computing has drastically increased the number of datacenters and the energy consumption of data centers and that has become a critical issue which is extremely important in green ambience. These days the cloud data center needs high energy resources that leads to high operational cost and also maximizes CO2 - carbon footprint that pollutes the ambience which is not to be considered as green ambience. So we need to provide a way that leads us to green ambience. Cloud computing for the green ambience should be designed in a way which will utilize less energy resources and to minimize the CO2 -carbon footprint, known as green cloud. In this paper we discuss various elements of Clouds which contributes to minimize the total energy consumption and the carbon emission so as to enable green ambience through green cloud computing.

Optimization of Energy Consumption in the Mobile Cloud Systems

  • Su, Pan;Shengping, Wang;Weiwei, Zhou;Shengmei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4044-4062
    • /
    • 2016
  • We investigate the optimization of energy consumption in Mobile Cloud environment in this paper. In order to optimize the energy consumed by the CPUs in mobile devices, we put forward using the asymptotic time complexity (ATC) method to distinguish the computational complexities of the applications when they are executed in mobile devices. We propose a multi-scale scheme to quantize the channel gain and provide an improved dynamic transmission scheduling algorithm when offloading the applications to the cloud center, which has been proved to be helpful for reducing the mobile devices energy consumption. We give the energy estimation methods in both mobile execution model and cloud execution model. The numerical results suggest that energy consumed by the mobile devices can be remarkably saved with our proposed multi-scale scheme. Moreover, the results can be used as a guideline for the mobile devices to choose whether executing the application locally or offloading it to the cloud center.

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.