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Abstract 

 
As a part of cloud computing technology, algorithms for cloud task scheduling place an 
important influence on the area of cloud computing in data centers. In our earlier work, we 
proposed DeepEnergyJS, which was designed based on the original version of the policy 
gradient and reinforcement learning algorithm. We verified its effectiveness through 
simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) 
algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of 
the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with 
reinforcement learning algorithm in terms of convergence rate, converged value, and stability. 
The results indicate that PPO performed better in training and test data sets compared with 
reinforcement learning algorithm, as well as other general heuristic algorithms, such as First 
Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than 
DeepEnergyJS by about 7.814%. 
 
 
Keywords: cloud computing, cloud task scheduling, deep reinforcement learning, energy 
consumption, proximal policy optimization 
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1. Introduction 

Cloud computing has become a trend in high-performance computing and is characterized 
by its large-scale, heterogeneous computing resources, and flexible computational architecture. 
In recent years, active work has appeared in cloud computing areas such as scheduling, 
placement, energy management, privacy and policy, security [1–4], and more. Algorithms for 
task scheduling have attracted extensive attention as a part of cloud computing technology. 
Task scheduling refers to mapping several tasks to computational resources. With the 
development of cloud service providers (CSPs), huge energy consumption and carbon dioxide 
emissions have become a serious challenge. Developing an energy-saving task scheduling 
strategy has practical importance. 

Q-learning [5] is a classic algorithm for reinforcement learning. Deep neural networks have 
shown strong fitting ability in many fields, and reinforcement learning has an excellent ability 
for decision-making. Deep reinforcement learning (DRL) [6] combines deep learning (DL) [7] 
and reinforcement learning (RL) [8] algorithms, which enable it to solve complex control 
problems with a large state/action space. Deep learning captures the features of dynamic 
scenes from the current environment, and RL learns the best strategy guided by the 
corresponding reward obtained from interactions with the environment. 

In our previous work, we proposed DeepEnergyJS [9], a cloud task scheduling framework 
based on deep reinforcement learning algorithms [10]. DeepEnergyJS obtained acceptable 
experimental results but still can be improved. 

In this work we will upgrade our framework to DeepEnergyJSV2.0 by applying the 
Proximal Policy Optimization (PPO) algorithm as an alternative to the original policy gradient 
algorithm in DeepEnergyJS to improve the efficiency of reducing energy consumption.  

To validate DeepEnergyJSV2.0, we updated the data set from Alibaba Cluster Data 
V2017[11] to Alibaba Cluster Data V2018[12], which consists of hybrid-type tasks that 
contain both independent tasks and tasks with inner task dependencies. The original data set 
does not contain tasks with dependencies, which makes it not very convincing to validate 
DeepEnergyJSV2.0. With Alibaba Cluster Data V2018, we can verify DeepEnergyJS on 
hybrid-type tasks, and our simulation experiment is more in line with real-world cases. 

2. Related Works 
Many approaches have been proposed to reduce the energy consumption of data centers 
through task scheduling. A. Francis Saviour Devaraj et al. [13] proposed an algorithm based 
on best-worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) methodology, in which they presented a modified particle swarm optimization 
algorithm that achieves great results in balancing energy efficiency. Peng and Wen et al. [14] 
proposed an optimal task workflow scheduling scheme based on the dynamic voltage and 
frequency scaling technique and the whale optimization algorithm, which can achieve a 
balance between performance and energy consumption. However, these offline algorithms 
have difficulties dealing with online dynamic tasks and large inputs. The dynamics and 
complexity of an enterprise strategy environment make scheduling more challenging. Ding et 
al. [15] proposed a Q-learning-based task scheduling framework for energy-efficient cloud 
computing (QEEC) to minimize task response time and maximize each server’s CPU 
utilization simultaneously. Seth et al. [16] discussed the dynamic heterogeneous shortest job 
first (DHSJF) model, which considers both dynamic heterogeneities of workload and resources. 
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The task scheduling problem is an NP-hard problem, and various meta-heuristic algorithms 
can provide a feasible solution under certain conditions. The current research on cloud 
computing task scheduling focuses on independent tasks with traditional heuristic algorithms. 
Deep reinforcement learning (DRL) has attracted attention in recent years and has an 
outstanding ability to solve complicated control problems with high-dimensional state spaces 
and low-dimensional action spaces. Research work on how to apply DRL to obtain an efficient 
task scheduling strategy and make full use of system resources is missing.  

In the study of dynamic task scheduling, the widely used methods are either heuristic 
algorithms or the DRL algorithm based on deep Q-networks. The problem of how to apply the 
DRL algorithm to cloud computing task scheduling strategy needs to be studied.  

Compared with DQN, which adapts the ε-greedy strategy, the policy gradient can represent 
a random strategy and is free from the adjustment of the ε parameter. Based on this, 
DeepEnergyJS is the first system to present a policy-gradient-based task scheduling method 
to minimize energy consumption and improve the energy efficiency in a cloud computing 
system, which has also been proven to be effective for independent tasks and as well as tasks 
with dependencies. Our previous studies have exclusively focused on hybrid-type tasks that 
contain both independent tasks and tasks with inner task dependencies. In this paper, we prove 
that DeepEnergyJS is also applicable to hybrid-type tasks and adopt another gradient-based 
algorithm called proximal policy optimization (PPO) [17] to update DeepEnergyJS to 
DeepEnergyJSV2.0 for better performance. 

3. Theory 

3.1 Proximal Policy Optimization Algorithm 
The policy gradient method is a type of reinforcement learning algorithm, the original version 
of the policy gradient algorithm, sample data based on the Monte Carlo method, and the 
variance of the estimated gradient will be higher. REINFORCE is an online learning gradient 
descent algorithm that minimizes the cost function, which means that the agent that interacts 
with the environment and the agent that updates its model parameters using environmental 
feedback is the same. In the algorithm training phase, the agent has to sample a batch of 
samples under policy π and update the parameters of the same policy network; for the next 
iterative learning, the agent needs to interact with the environment again to collect the new 
data, that is, interacting with the environment while updating the parameters of the policy 
network. There are numerous problems with this online learning approach. 

1. It consumes a significant amount of time for the agent to resample new data for 
iterative parameter updating. 

2. Previously collected data could not be reused, which in turn led to low data utilization. 
The PPO algorithm is another policy gradient algorithm that is suitable for continuous 

control problems [18], and it is simpler in its mathematical implementation compared to other 
policy gradient-based method (PGM)-based RL algorithms [19]. PPO is an offline learning 
method, and the strategy it adopts to interact with the environment and the strategy to be 
learned differ. The main idea of the PPO algorithm is to transfer online learning to offline 
learning based on importance sampling and adopt two networks to improve the network 
convergence rate. One policy network π' is used to process environment interactions and data 
gathering, and the other network tweaks its parameters by observing the effective interaction 
between π' and the environment. Different networks indicate different distribution functions, 
and the importance sampling mechanisms introduced to the sample from the original 



1880                                                              Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization  
Algorithm for Lowering Energy Consumption of Data Center 

distribution. In the PPO algorithm, the original distribution is π'. When it is difficult to sample 
from the original distribution p(x), it can sample from another distribution q(x), and a weight 
(p(x))/(q(x)) can be multiplied to correct the difference between the two distributions. The 
derivation is shown in (1) to (3). 

Ex~p[f(x)] = � f(x)p(x)dx =  � f(x)
p(x)
q(x) q(x)dx (1) 

� f(x)
p(x)
q(x) q(x)dx = Ex~q �f(x)

p(x)
q(x)� (2) 

Ex~p[f(x)] ≈ Ex~q �f(x)
p(x)
q(x)� =

1
N
� f(xi)

p(xi)
q(xi)

N

i=1

(3) 

By importance sampling, the adverse effect of large deviation under the original 
distribution is improved, and the weighting factor acts as a regulator. To make importance 
sampling to be effective, the new and old distributions cannot differ significantly. Therefore, 
in the actual application of the PPO algorithm, a constraint is added to limit the difference 
between the two distributions. 

3.2 The Derivation Process of Policy Gradient in PPO Algorithm 
Policy π' provides collected data for policy π's parameter updating, which is the main idea 
behind the PPO algorithm. The derivation of the objective function J𝜃𝜃′(θ) is given by (4). 

Jθ′(θ) = E(st,at)~πθ�A
θ(st, at)∇logπθ(at|st)� (4)                                

= E(st,at)~πθ′ �
πθ(st, at)
πθ′(st, at)

Aθ′(st, at)∇logπθ(at|st)� 

= E(st,at)~πθ′ �
πθ(at|st)
πθ′(at|st)

πθ(st)
πθ′(st)

Aθ′(st, at)∇logπθ(at|st)� 

≈ E(st,at)~πθ′[
πθ(at|st)
πθ′(at|st)

Aθ′(st, at)∇logπθ(at|st)] 

In formula (4), 
π
𝜃𝜃

(st)

π
𝜃𝜃′

(st)
 is generally ignored; the pro rata coefficient r

θ
=

π
𝜃𝜃

(at|st)

π
𝜃𝜃′

(at|st)
 denotes 

the difference between distribution π' and π. To narrow the difference, the theory TRPO [19] 
suggests using an adaptive KL penalty coefficient, as expressed in (5). 

Jppoθ′ (θ) = Jθ′(θ) − βKL(θ, θ′) ≈ � rθ
(st,at)

Aθ′(st, at) − βKL(θ, θ′) (5) 

The KL divergence is used to quantify the two different distributions. If the two 
distributions are identical, the value of the total KL divergence is zero, whereas a smaller value 
indicates a higher similarity between the two distributions conversely, a larger discrepancy. 
The main objective is represented by (6). 

Jppo2θ′ (θ) ≈ � min (rθ
(st,at)

Aθ′(st, at), clip(rθ, 1 − ϵ, 1 + ϵ)Aθ′(st, at)) (6) 
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In formula (6), the function clip(𝑟𝑟𝜃𝜃, 1 − ϵ, 1 + ϵ)  is displayed in Fig. 1. The function 
min (𝑟𝑟𝜃𝜃A𝜃𝜃′(st, at), clip(𝑟𝑟𝜃𝜃, 1 − ϵ, 1 + ϵ)𝐴𝐴𝜃𝜃′(st, at)) is displayed in Fig. 2. 
 

 
Fig. 1. Function clip(rθ, 1 − ϵ, 1 + ϵ) 

 
Fig. 2. Function min (rθAθ′(st, at), clip(rθ, 1 − ϵ, 1 + ϵ)Aθ′(st, at)) 

 
The red line in the plot represents the objective function, when Aθ′(st, at) is greater than 0, 

the probability of state-action pair (st, at) selected will increase, which means the value of 
πθ(st, at) will also increase, but the πθ(st, at)/πθ′(st, at) ratio cannot exceed 1 + ϵ. Likewise, 
when Aθ′(st, at) is less than 0, the probability of state-action pair (st, at) being selected will 
decrease which result in the decreasing πθ(st, at), and the πθ(st, at)/πθ′(st, at) ratio can also 
not be lower than1 − ϵ. Furthermore, limiting the distance between π and π′. 

Subsequent to the above analysis, the calculation of the policy gradient is shown in (7). 

gb(τ) = �min [
πθ(at|st)
πθ′(at|st)

∇logπθ(at|st) ∙ (R(τ)− b), clip(
πθ(at|st)
πθ′(at|st)

, 1 − ϵ, 1 + ϵ) ∙ (R(τ)− b)
T

t=0

](7) 

4. Method 

4.1 MDP Model 
Task scheduling is an NP-hard problem, and the Markov decision process can provide a 
framework for modeling complex cloud task scheduling decision processes. As in our previous 
work, the state space is described by a list 

S = [〈m1, t1〉, 〈m2, t2〉, … , 〈mi, ti〉, . . . , 〈mtotal, ttotal〉]  
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, where each element in the list is a 〈mi, ti〉 pair, indicating the task-instance ti  can be 
scheduled to machine mi. The set of indexes of the state space list A = [1,2, … , i, . . . , total] is 
designed to denote the action space, action i means selecting 〈mi, ti〉 pair to allocate ti to mi. 
The added value of the power of the data center after the current acts multiplies (-1) represents 
the reward signal. The extracted properties in task ti and machine mi were presented in our 
previous work [9]. 

4.2 Formulation of Objective Optimization 
The major research objective of this work is to propose an energy-minimizing method to lower 
energy consumption in a data center. The energy consumption for each machine can be 
accumulated by the instantaneous power. The instantaneous power of time t is determined 
using (8). 

power(u) = Pidle + �Pbusy − pidle�. ur (8) 
 

While Pidle represents static power, Pbusy the maximum power, u is the CPU usage, r is 
determined by the machine type, and it should be obtained from the best-fit curves. 

Assuming that there are M machines, the total energy consumption is calculated using (9). 

E = ��power(u)t 
Ti

t=0

M

i=1

(9) 

 

4.3. The Overall Framework of Method 
The overall framework of the task-scheduling method is shown in Fig. 3. Because the 
simulation experiments are initiated at each instance of time, when tasks initiate, the state 
space is created. For every taskInstancei arriving, if machinej satisfies the resource demand 
of taskInstancei, the pair < machinej, taskInstancei > is then incorporated into the list of 
the state space. It is worth noting that if machinek  also meets the requirements, pair <
machinek, taskInstancei > is also required to be added to the state space list. All of the 
machine-task instance pairs in the state space are directly input into the neural networks, and 
the fitness for each pair will be output. Suppose that < machineaction, taskInstanceaction > 
has the maximum fitness, taskInstanceaction will be scheduled to machineaction. Based on 
this, the state space is re-constructed for the remaining unscheduled task instances until the 
observed state space is empty. It is worth noting that time will not elapse during the period 
when the state space is not empty. There is more than one method for the neural networks to 
update the parameters, and in our previous study, REINFORCE was adopted; in this study, we 
performed the PPO algorithm and verified the factor validity first, and then contrast the two 
algorithms in terms of convergence rate, converged value, and stability. The flow chart of the 
experiment is shown in Fig. 4. 
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Fig. 3. The Overall Framework of task scheduling method. 
 
 

Algorithm 1. The procedures of the simulation. 
Algorithm 1: PPO Algorithm 

1: Initialization of all parameters：θ = θ0;  θ′ = θ0 
2: The simulation is performed through an iterative algorithm until convergence. 
3: Create N threads and use policy πθ′ to collect N independent trajectories [τ1, τ2, τ3, … , τn]        
4: Compute the baselines[b1, b2, b3, … , bn] 
5: Calculate the gradient for each trajectory according to equation (9) and obtain 
[g(τ1), g(τ2), … , g(τN)] 
6: Calculate ∇θ𝒥𝒥(θ)  
7: Update parameters of πθ：θ = θ + αiter∇θ𝒥𝒥(θ) 
8: if times == C: copy parameters θ to  θ′, i.e. θ′ = θ time = 0 
   else: time ++; 
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Fig. 4. The flow chart of the experiment 

5. Experiment 

5.1 Experimental Environment 
Deep learning approaches require large amounts of memory because of the computation 
intensity. In this study, we performed the simulation experiments on a 32 GB computer 
running 119-Ubuntu (x86_64) with an Intel Xeon E5-2667 (3.20 GHz) processor with 16 cores. 
The method was simulated using Python and Python libraries such as Matplotlib [20], 
simply3[21], pandas [22], NumPy[23], and TensorFlow[24]. Programs were developed by 
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JetBrains PyCharm 2020. In order to compute the energy consumption during the 
experimentation process based on (9), we downloaded data from some mainstream servers that 
represent correspondence between CPU utilization and real power from the website 
(http://www.spec.org/power_ssj2008/results/power_ssj2008.html), as shown in Table 1 to fit 
the EM power model and the fitted curve is depicted in Fig. 5. The EM power model 
parameters r for each kind server is as follows: 0.9569, 0.7257, 1.5767, 0.7119 and 1.5324. 
 

Table 1. The power of selected server at different CPU utilization 

CPU 
utilization 

PowerEdge 
C5220 

HP ProLiant 
DL2000 

IBM System 
x3630 M4 

IBM System 
x iDataPlex 
dx360 M3 

System 
x3200 M3 

0% 194 178 58.1 92.7 45.0 
10% 254 306 79.7 162 48.6 
20% 303 349 89.6 182 52.8 
30% 345 382 100 199 57.4 
40% 386 415 112 216 62.9 
50% 427 451 128 234 69.0 
60% 481 490 146 255 77.8 
70% 539 532 171 276 88.0 
80% 597 576 196 298 98.3 
90% 635 617 227 318 109 
100% 672 660 269 341 119 

 

 
Fig. 5. Fitted curve for the EM power model 

 
The experiments mainly focus on the task scheduling problem in heterogeneous cloud 

environments, and the number of CPU cores and memory units are listed in Table 2. 
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Table 2. Machines configuration 

Machine Type CPU cores Memory 
Units 

r of EM power 
model 

PowerEdge C5220 32 1 0.9569 
HP ProLiant DL2000 80 2 0.7257 

IBM System x3630 M4 120 3 1.5767 
IBM System x iDataPlex dx360 

M3 
80 1.5 0.7119 

System x3200 M3 40 1 1.5324 

5.2 Dataset 
In this study, the data set from Alibaba Cluster Data V2018[20] was used as the benchmark 
dataset. Compared to Alibaba Cluster Data V2017[11], V2018 has both independent tasks and 
tasks with dependencies. In practice, we divide the jobs in V2018 into several chunks, and 
each chunk has 10 jobs arriving in sequential order. We trained DeepEnergyJSV2.0 on the 
first six chunks. The number of job chunks seen by DeepEnergyJSV2.0 and the number of 
training iterations are accumulated. It is important to note that the number of tasks in each job 
chunk varies and that each task contains a different number of task instances, which means 
that the workload varies with the change of time. 

5.3. Experimental Results and Analysis 

5.3.1 Convergence and Generalization of PPO Algorithm 
In this section, we compared the PPO algorithm with the REINFORCE algorithm in the same 
training procedures (iteration: 300). The training curve is shown in Fig. 6. 
 

 

 
Fig. 6. Training curves of PPO algorithm and REINFORCE algorithm 

 
The figure shows the convergence of PPO proved by the experimental results. In the case 

of algorithm stability, the curve of PPO is smoother than that of REINFORCE, which indicates 
better performance. In terms of convergence speed, except for Job Chunk No.4, the number of 
iterations of PPO to achieve convergence is less than that of REINFORCE. For the converged 
value, the two algorithms have similar values in job chunks No.1, No.2, and No.4. However, 
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in Job Chunk No.3, No.5, and No.6, PPO has lower energy consumption. From the overall 
training process, PPO has more advantages over REINFORCE. 

5.3.2 PPO and REINFORCE Comparison 
In this section, we compare how well the PPO and REINFORCE perform on the test job 
chunks. Table 3 lists the energy consumption for job chunks No.7 to No.10 in tabular form, 
and the line diagram is presented in Fig. 7. 

 
Table 3. Energy consumption on test set 

Energy (w) 
 

Job  
Chunk No. 

REINFORCE PPO First Fit Random Tetris 

7 2662.112 2641.308 2784.635 2781.0287 2778.182 
8 12934.447 12869.129 13941.556 13948.686 13950.213 
9 12987.001 12774.974 14831.202 14027.881 13992.043 

10 4223.319 4191.319 4330.059 4401.123 4325.423 
 

 
Fig. 7. Energy consumption on test set 

 
As shown in Fig. 7, the PPO algorithm performs better than the other algorithms, that is, 

REINFORCE, First Fit, Random, and Tetris, and REINFORCE performs the second best. In 
addition, it emphasized that deep reinforcement learning (DRL) algorithms have significant 
advantages over general heuristic algorithms in solving difficult cloud task scheduling 
problems. 
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Table 4. Percentage reduction of energy consumption that PPO compare to the other algorithms 
              Energy (w) 

 
 

Job Chunk No. 

REINFORCE First Fit Random Tetris 

7 7.814% 5.024 % 5.147% 4.927% 
8 5.050% 7.739% 7.692% 7.750% 
9 1.633% 8.932% 13.864% 8.698% 
10 7.577% 4.767% 3.204% 3.100% 

 
Table 4 demonstrates the percentage of energy consumption decreased for the PPO 

compared to other algorithms. Compared to REINFORCE, PPO reached a maximal reduction 
of approximately 7.814%, 8.932% versus First Fit, 13.864% compared to Random, and 8.698% 
to Tetris. For all of the outcomes from the different job chunks, the PPO algorithm was verified 
as the most effective among the scheduling algorithms used in this study, and the 
generalization of the method was also validated. 

6. Conclusion and Future Work 
With the goal of minimizing energy consumption, the work in this paper is an extension and 
based on previous work. We changed the DRL algorithm included in the task scheduling 
method from REINFORCE to PPO to update the previous DeepEnergyJS to 
DeepEnergyJSV2.0. The experimental results show that DeepEnergyJSV2.0 achieves 
excellent results in hybrid-type tasks that contain both independent tasks and tasks with inner 
task dependencies to optimize the objective of energy consumption. In addition, 
DeepEnergyJSV2.0 achieves better overall performance on the training set and can find a 
better near-global optimal solution than the common heuristic algorithms, such as First Fit, 
Random, and Tetris, on the test set. 

If applied in an actual cloud environment, our proposed DeepEnergyJSV2.0 will be an 
alternative to many existing task scheduling methods based on heuristic algorithms. However, 
the shortcomings of our research and directions for future studies are as follows: 
1. Real cloud computing environments are more complex, but our research was conducted 

only for a single data center. 
2. The research in this study is only aimed at the optimization of a single goal. In practice, 

a comprehensive consideration of multi-objective optimization will be more rewarding. 
3. Containerization technology is an emerging virtualization technique that plays an 

increasingly important role in the future. Developing efficient strategies for scheduling 
tasks in containers is a focus for future research. 

4. The performance of PPO is not stable enough. As shown in Fig. 6, the results of PPO are 
not better than REINFORCE in job chunks No.1, No.2, and No.4. The reason is that the 
task types in different job chunks differ. This result indicates that the performance of the 
PPO algorithm is not superior to the reinforcement learning algorithm in some specific 
scenarios. These specific scenarios need to be studied in the future to determine their 
underlying patterns. 

5. In the future, cloud computing needs to combine with other computing model like edge 
computing, fog computing, serverless computing and quantum computing [25]. How to 
integrate these computing models to complete computing tasks and use AI/ML to 
optimize them is the main research direction in the future, which also poses a huge 
challenge to us. 
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