
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, Jun. 2022 1877
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.06.006 ISSN : 1976-7277

Cloud Task Scheduling Based on Proximal
Policy Optimization Algorithm for

Lowering Energy Consumption of Data
Center

Yongquan Yang1, Cuihua He1, Bo Yin1, Zhiqiang Wei1, and Bowei Hong1*

1 Department of Computer Science and technology (Ocean University of China)
QingDao, China

[e-mail: yangyq@ouc.edu.cn, hecuihua@stu.ouc.edu.cn, ybfirst@ouc.edu.cn, weizhiqiang@ouc.edu.cn,
hongbowei@ouc.edu.cn]

*Corresponding author: Bowei Hong

Received January 5, 2022; revised April 21, 2022; accepted May 30, 2022;
 published June 30, 2022

Abstract

As a part of cloud computing technology, algorithms for cloud task scheduling place an
important influence on the area of cloud computing in data centers. In our earlier work, we
proposed DeepEnergyJS, which was designed based on the original version of the policy
gradient and reinforcement learning algorithm. We verified its effectiveness through
simulation experiments. In this study, we used the Proximal Policy Optimization (PPO)
algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of
the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with
reinforcement learning algorithm in terms of convergence rate, converged value, and stability.
The results indicate that PPO performed better in training and test data sets compared with
reinforcement learning algorithm, as well as other general heuristic algorithms, such as First
Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than
DeepEnergyJS by about 7.814%.

Keywords: cloud computing, cloud task scheduling, deep reinforcement learning, energy
consumption, proximal policy optimization

1878 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

1. Introduction

Cloud computing has become a trend in high-performance computing and is characterized
by its large-scale, heterogeneous computing resources, and flexible computational architecture.
In recent years, active work has appeared in cloud computing areas such as scheduling,
placement, energy management, privacy and policy, security [1–4], and more. Algorithms for
task scheduling have attracted extensive attention as a part of cloud computing technology.
Task scheduling refers to mapping several tasks to computational resources. With the
development of cloud service providers (CSPs), huge energy consumption and carbon dioxide
emissions have become a serious challenge. Developing an energy-saving task scheduling
strategy has practical importance.

Q-learning [5] is a classic algorithm for reinforcement learning. Deep neural networks have
shown strong fitting ability in many fields, and reinforcement learning has an excellent ability
for decision-making. Deep reinforcement learning (DRL) [6] combines deep learning (DL) [7]
and reinforcement learning (RL) [8] algorithms, which enable it to solve complex control
problems with a large state/action space. Deep learning captures the features of dynamic
scenes from the current environment, and RL learns the best strategy guided by the
corresponding reward obtained from interactions with the environment.

In our previous work, we proposed DeepEnergyJS [9], a cloud task scheduling framework
based on deep reinforcement learning algorithms [10]. DeepEnergyJS obtained acceptable
experimental results but still can be improved.

In this work we will upgrade our framework to DeepEnergyJSV2.0 by applying the
Proximal Policy Optimization (PPO) algorithm as an alternative to the original policy gradient
algorithm in DeepEnergyJS to improve the efficiency of reducing energy consumption.

To validate DeepEnergyJSV2.0, we updated the data set from Alibaba Cluster Data
V2017[11] to Alibaba Cluster Data V2018[12], which consists of hybrid-type tasks that
contain both independent tasks and tasks with inner task dependencies. The original data set
does not contain tasks with dependencies, which makes it not very convincing to validate
DeepEnergyJSV2.0. With Alibaba Cluster Data V2018, we can verify DeepEnergyJS on
hybrid-type tasks, and our simulation experiment is more in line with real-world cases.

2. Related Works
Many approaches have been proposed to reduce the energy consumption of data centers
through task scheduling. A. Francis Saviour Devaraj et al. [13] proposed an algorithm based
on best-worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) methodology, in which they presented a modified particle swarm optimization
algorithm that achieves great results in balancing energy efficiency. Peng and Wen et al. [14]
proposed an optimal task workflow scheduling scheme based on the dynamic voltage and
frequency scaling technique and the whale optimization algorithm, which can achieve a
balance between performance and energy consumption. However, these offline algorithms
have difficulties dealing with online dynamic tasks and large inputs. The dynamics and
complexity of an enterprise strategy environment make scheduling more challenging. Ding et
al. [15] proposed a Q-learning-based task scheduling framework for energy-efficient cloud
computing (QEEC) to minimize task response time and maximize each server’s CPU
utilization simultaneously. Seth et al. [16] discussed the dynamic heterogeneous shortest job
first (DHSJF) model, which considers both dynamic heterogeneities of workload and resources.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1879

The task scheduling problem is an NP-hard problem, and various meta-heuristic algorithms
can provide a feasible solution under certain conditions. The current research on cloud
computing task scheduling focuses on independent tasks with traditional heuristic algorithms.
Deep reinforcement learning (DRL) has attracted attention in recent years and has an
outstanding ability to solve complicated control problems with high-dimensional state spaces
and low-dimensional action spaces. Research work on how to apply DRL to obtain an efficient
task scheduling strategy and make full use of system resources is missing.

In the study of dynamic task scheduling, the widely used methods are either heuristic
algorithms or the DRL algorithm based on deep Q-networks. The problem of how to apply the
DRL algorithm to cloud computing task scheduling strategy needs to be studied.

Compared with DQN, which adapts the ε-greedy strategy, the policy gradient can represent
a random strategy and is free from the adjustment of the ε parameter. Based on this,
DeepEnergyJS is the first system to present a policy-gradient-based task scheduling method
to minimize energy consumption and improve the energy efficiency in a cloud computing
system, which has also been proven to be effective for independent tasks and as well as tasks
with dependencies. Our previous studies have exclusively focused on hybrid-type tasks that
contain both independent tasks and tasks with inner task dependencies. In this paper, we prove
that DeepEnergyJS is also applicable to hybrid-type tasks and adopt another gradient-based
algorithm called proximal policy optimization (PPO) [17] to update DeepEnergyJS to
DeepEnergyJSV2.0 for better performance.

3. Theory

3.1 Proximal Policy Optimization Algorithm
The policy gradient method is a type of reinforcement learning algorithm, the original version
of the policy gradient algorithm, sample data based on the Monte Carlo method, and the
variance of the estimated gradient will be higher. REINFORCE is an online learning gradient
descent algorithm that minimizes the cost function, which means that the agent that interacts
with the environment and the agent that updates its model parameters using environmental
feedback is the same. In the algorithm training phase, the agent has to sample a batch of
samples under policy π and update the parameters of the same policy network; for the next
iterative learning, the agent needs to interact with the environment again to collect the new
data, that is, interacting with the environment while updating the parameters of the policy
network. There are numerous problems with this online learning approach.

1. It consumes a significant amount of time for the agent to resample new data for
iterative parameter updating.

2. Previously collected data could not be reused, which in turn led to low data utilization.
The PPO algorithm is another policy gradient algorithm that is suitable for continuous

control problems [18], and it is simpler in its mathematical implementation compared to other
policy gradient-based method (PGM)-based RL algorithms [19]. PPO is an offline learning
method, and the strategy it adopts to interact with the environment and the strategy to be
learned differ. The main idea of the PPO algorithm is to transfer online learning to offline
learning based on importance sampling and adopt two networks to improve the network
convergence rate. One policy network π' is used to process environment interactions and data
gathering, and the other network tweaks its parameters by observing the effective interaction
between π' and the environment. Different networks indicate different distribution functions,
and the importance sampling mechanisms introduced to the sample from the original

1880 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

distribution. In the PPO algorithm, the original distribution is π'. When it is difficult to sample
from the original distribution p(x), it can sample from another distribution q(x), and a weight
(p(x))/(q(x)) can be multiplied to correct the difference between the two distributions. The
derivation is shown in (1) to (3).

Ex~p[f(x)] = � f(x)p(x)dx = � f(x)
p(x)
q(x) q(x)dx (1)

� f(x)
p(x)
q(x) q(x)dx = Ex~q �f(x)

p(x)
q(x)� (2)

Ex~p[f(x)] ≈ Ex~q �f(x)
p(x)
q(x)� =

1
N
� f(xi)

p(xi)
q(xi)

N

i=1

(3)

By importance sampling, the adverse effect of large deviation under the original
distribution is improved, and the weighting factor acts as a regulator. To make importance
sampling to be effective, the new and old distributions cannot differ significantly. Therefore,
in the actual application of the PPO algorithm, a constraint is added to limit the difference
between the two distributions.

3.2 The Derivation Process of Policy Gradient in PPO Algorithm
Policy π' provides collected data for policy π's parameter updating, which is the main idea
behind the PPO algorithm. The derivation of the objective function J𝜃𝜃′(θ) is given by (4).

Jθ′(θ) = E(st,at)~πθ�A
θ(st, at)∇logπθ(at|st)� (4)

= E(st,at)~πθ′ �
πθ(st, at)
πθ′(st, at)

Aθ′(st, at)∇logπθ(at|st)�

= E(st,at)~πθ′ �
πθ(at|st)
πθ′(at|st)

πθ(st)
πθ′(st)

Aθ′(st, at)∇logπθ(at|st)�

≈ E(st,at)~πθ′[
πθ(at|st)
πθ′(at|st)

Aθ′(st, at)∇logπθ(at|st)]

In formula (4),
π
𝜃𝜃

(st)

π
𝜃𝜃′

(st)
 is generally ignored; the pro rata coefficient r

θ
=

π
𝜃𝜃

(at|st)

π
𝜃𝜃′

(at|st)
 denotes

the difference between distribution π' and π. To narrow the difference, the theory TRPO [19]
suggests using an adaptive KL penalty coefficient, as expressed in (5).

Jppoθ′ (θ) = Jθ′(θ) − βKL(θ, θ′) ≈ � rθ
(st,at)

Aθ′(st, at) − βKL(θ, θ′) (5)

The KL divergence is used to quantify the two different distributions. If the two
distributions are identical, the value of the total KL divergence is zero, whereas a smaller value
indicates a higher similarity between the two distributions conversely, a larger discrepancy.
The main objective is represented by (6).

Jppo2θ′ (θ) ≈ � min (rθ
(st,at)

Aθ′(st, at), clip(rθ, 1 − ϵ, 1 + ϵ)Aθ′(st, at)) (6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1881

In formula (6), the function clip(𝑟𝑟𝜃𝜃, 1 − ϵ, 1 + ϵ) is displayed in Fig. 1. The function
min (𝑟𝑟𝜃𝜃A𝜃𝜃′(st, at), clip(𝑟𝑟𝜃𝜃, 1 − ϵ, 1 + ϵ)𝐴𝐴𝜃𝜃′(st, at)) is displayed in Fig. 2.

Fig. 1. Function clip(rθ, 1 − ϵ, 1 + ϵ)

Fig. 2. Function min (rθAθ′(st, at), clip(rθ, 1 − ϵ, 1 + ϵ)Aθ′(st, at))

The red line in the plot represents the objective function, when Aθ′(st, at) is greater than 0,

the probability of state-action pair (st, at) selected will increase, which means the value of
πθ(st, at) will also increase, but the πθ(st, at)/πθ′(st, at) ratio cannot exceed 1 + ϵ. Likewise,
when Aθ′(st, at) is less than 0, the probability of state-action pair (st, at) being selected will
decrease which result in the decreasing πθ(st, at), and the πθ(st, at)/πθ′(st, at) ratio can also
not be lower than1 − ϵ. Furthermore, limiting the distance between π and π′.

Subsequent to the above analysis, the calculation of the policy gradient is shown in (7).

gb(τ) = �min [
πθ(at|st)
πθ′(at|st)

∇logπθ(at|st) ∙ (R(τ)− b), clip(
πθ(at|st)
πθ′(at|st)

, 1 − ϵ, 1 + ϵ) ∙ (R(τ)− b)
T

t=0

](7)

4. Method

4.1 MDP Model
Task scheduling is an NP-hard problem, and the Markov decision process can provide a
framework for modeling complex cloud task scheduling decision processes. As in our previous
work, the state space is described by a list

S = [〈m1, t1〉, 〈m2, t2〉, … , 〈mi, ti〉, . . . , 〈mtotal, ttotal〉]

1882 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

, where each element in the list is a 〈mi, ti〉 pair, indicating the task-instance ti can be
scheduled to machine mi. The set of indexes of the state space list A = [1,2, … , i, . . . , total] is
designed to denote the action space, action i means selecting 〈mi, ti〉 pair to allocate ti to mi.
The added value of the power of the data center after the current acts multiplies (-1) represents
the reward signal. The extracted properties in task ti and machine mi were presented in our
previous work [9].

4.2 Formulation of Objective Optimization
The major research objective of this work is to propose an energy-minimizing method to lower
energy consumption in a data center. The energy consumption for each machine can be
accumulated by the instantaneous power. The instantaneous power of time t is determined
using (8).

power(u) = Pidle + �Pbusy − pidle�. ur (8)

While Pidle represents static power, Pbusy the maximum power, u is the CPU usage, r is
determined by the machine type, and it should be obtained from the best-fit curves.

Assuming that there are M machines, the total energy consumption is calculated using (9).

E = ��power(u)t
Ti

t=0

M

i=1

(9)

4.3. The Overall Framework of Method
The overall framework of the task-scheduling method is shown in Fig. 3. Because the
simulation experiments are initiated at each instance of time, when tasks initiate, the state
space is created. For every taskInstancei arriving, if machinej satisfies the resource demand
of taskInstancei, the pair < machinej, taskInstancei > is then incorporated into the list of
the state space. It is worth noting that if machinek also meets the requirements, pair <
machinek, taskInstancei > is also required to be added to the state space list. All of the
machine-task instance pairs in the state space are directly input into the neural networks, and
the fitness for each pair will be output. Suppose that < machineaction, taskInstanceaction >
has the maximum fitness, taskInstanceaction will be scheduled to machineaction. Based on
this, the state space is re-constructed for the remaining unscheduled task instances until the
observed state space is empty. It is worth noting that time will not elapse during the period
when the state space is not empty. There is more than one method for the neural networks to
update the parameters, and in our previous study, REINFORCE was adopted; in this study, we
performed the PPO algorithm and verified the factor validity first, and then contrast the two
algorithms in terms of convergence rate, converged value, and stability. The flow chart of the
experiment is shown in Fig. 4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1883

Fig. 3. The Overall Framework of task scheduling method.

Algorithm 1. The procedures of the simulation.
Algorithm 1: PPO Algorithm

1: Initialization of all parameters：θ = θ0; θ′ = θ0
2: The simulation is performed through an iterative algorithm until convergence.
3: Create N threads and use policy πθ′ to collect N independent trajectories [τ1, τ2, τ3, … , τn]
4: Compute the baselines[b1, b2, b3, … , bn]
5: Calculate the gradient for each trajectory according to equation (9) and obtain
[g(τ1), g(τ2), … , g(τN)]
6: Calculate ∇θ𝒥𝒥(θ)
7: Update parameters of πθ：θ = θ + αiter∇θ𝒥𝒥(θ)
8: if times == C: copy parameters θ to θ′, i.e. θ′ = θ time = 0
 else: time ++;

1884 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

Fig. 4. The flow chart of the experiment

5. Experiment

5.1 Experimental Environment
Deep learning approaches require large amounts of memory because of the computation
intensity. In this study, we performed the simulation experiments on a 32 GB computer
running 119-Ubuntu (x86_64) with an Intel Xeon E5-2667 (3.20 GHz) processor with 16 cores.
The method was simulated using Python and Python libraries such as Matplotlib [20],
simply3[21], pandas [22], NumPy[23], and TensorFlow[24]. Programs were developed by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1885

JetBrains PyCharm 2020. In order to compute the energy consumption during the
experimentation process based on (9), we downloaded data from some mainstream servers that
represent correspondence between CPU utilization and real power from the website
(http://www.spec.org/power_ssj2008/results/power_ssj2008.html), as shown in Table 1 to fit
the EM power model and the fitted curve is depicted in Fig. 5. The EM power model
parameters r for each kind server is as follows: 0.9569, 0.7257, 1.5767, 0.7119 and 1.5324.

Table 1. The power of selected server at different CPU utilization

CPU
utilization

PowerEdge
C5220

HP ProLiant
DL2000

IBM System
x3630 M4

IBM System
x iDataPlex
dx360 M3

System
x3200 M3

0% 194 178 58.1 92.7 45.0
10% 254 306 79.7 162 48.6
20% 303 349 89.6 182 52.8
30% 345 382 100 199 57.4
40% 386 415 112 216 62.9
50% 427 451 128 234 69.0
60% 481 490 146 255 77.8
70% 539 532 171 276 88.0
80% 597 576 196 298 98.3
90% 635 617 227 318 109
100% 672 660 269 341 119

Fig. 5. Fitted curve for the EM power model

The experiments mainly focus on the task scheduling problem in heterogeneous cloud

environments, and the number of CPU cores and memory units are listed in Table 2.

1886 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

Table 2. Machines configuration

Machine Type CPU cores Memory
Units

r of EM power
model

PowerEdge C5220 32 1 0.9569
HP ProLiant DL2000 80 2 0.7257

IBM System x3630 M4 120 3 1.5767
IBM System x iDataPlex dx360

M3
80 1.5 0.7119

System x3200 M3 40 1 1.5324

5.2 Dataset
In this study, the data set from Alibaba Cluster Data V2018[20] was used as the benchmark
dataset. Compared to Alibaba Cluster Data V2017[11], V2018 has both independent tasks and
tasks with dependencies. In practice, we divide the jobs in V2018 into several chunks, and
each chunk has 10 jobs arriving in sequential order. We trained DeepEnergyJSV2.0 on the
first six chunks. The number of job chunks seen by DeepEnergyJSV2.0 and the number of
training iterations are accumulated. It is important to note that the number of tasks in each job
chunk varies and that each task contains a different number of task instances, which means
that the workload varies with the change of time.

5.3. Experimental Results and Analysis

5.3.1 Convergence and Generalization of PPO Algorithm
In this section, we compared the PPO algorithm with the REINFORCE algorithm in the same
training procedures (iteration: 300). The training curve is shown in Fig. 6.

Fig. 6. Training curves of PPO algorithm and REINFORCE algorithm

The figure shows the convergence of PPO proved by the experimental results. In the case

of algorithm stability, the curve of PPO is smoother than that of REINFORCE, which indicates
better performance. In terms of convergence speed, except for Job Chunk No.4, the number of
iterations of PPO to achieve convergence is less than that of REINFORCE. For the converged
value, the two algorithms have similar values in job chunks No.1, No.2, and No.4. However,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1887

in Job Chunk No.3, No.5, and No.6, PPO has lower energy consumption. From the overall
training process, PPO has more advantages over REINFORCE.

5.3.2 PPO and REINFORCE Comparison
In this section, we compare how well the PPO and REINFORCE perform on the test job
chunks. Table 3 lists the energy consumption for job chunks No.7 to No.10 in tabular form,
and the line diagram is presented in Fig. 7.

Table 3. Energy consumption on test set

Energy (w)

Job
Chunk No.

REINFORCE PPO First Fit Random Tetris

7 2662.112 2641.308 2784.635 2781.0287 2778.182
8 12934.447 12869.129 13941.556 13948.686 13950.213
9 12987.001 12774.974 14831.202 14027.881 13992.043

10 4223.319 4191.319 4330.059 4401.123 4325.423

Fig. 7. Energy consumption on test set

As shown in Fig. 7, the PPO algorithm performs better than the other algorithms, that is,

REINFORCE, First Fit, Random, and Tetris, and REINFORCE performs the second best. In
addition, it emphasized that deep reinforcement learning (DRL) algorithms have significant
advantages over general heuristic algorithms in solving difficult cloud task scheduling
problems.

1888 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

Table 4. Percentage reduction of energy consumption that PPO compare to the other algorithms
 Energy (w)

Job Chunk No.

REINFORCE First Fit Random Tetris

7 7.814% 5.024 % 5.147% 4.927%
8 5.050% 7.739% 7.692% 7.750%
9 1.633% 8.932% 13.864% 8.698%
10 7.577% 4.767% 3.204% 3.100%

Table 4 demonstrates the percentage of energy consumption decreased for the PPO

compared to other algorithms. Compared to REINFORCE, PPO reached a maximal reduction
of approximately 7.814%, 8.932% versus First Fit, 13.864% compared to Random, and 8.698%
to Tetris. For all of the outcomes from the different job chunks, the PPO algorithm was verified
as the most effective among the scheduling algorithms used in this study, and the
generalization of the method was also validated.

6. Conclusion and Future Work
With the goal of minimizing energy consumption, the work in this paper is an extension and
based on previous work. We changed the DRL algorithm included in the task scheduling
method from REINFORCE to PPO to update the previous DeepEnergyJS to
DeepEnergyJSV2.0. The experimental results show that DeepEnergyJSV2.0 achieves
excellent results in hybrid-type tasks that contain both independent tasks and tasks with inner
task dependencies to optimize the objective of energy consumption. In addition,
DeepEnergyJSV2.0 achieves better overall performance on the training set and can find a
better near-global optimal solution than the common heuristic algorithms, such as First Fit,
Random, and Tetris, on the test set.

If applied in an actual cloud environment, our proposed DeepEnergyJSV2.0 will be an
alternative to many existing task scheduling methods based on heuristic algorithms. However,
the shortcomings of our research and directions for future studies are as follows:
1. Real cloud computing environments are more complex, but our research was conducted

only for a single data center.
2. The research in this study is only aimed at the optimization of a single goal. In practice,

a comprehensive consideration of multi-objective optimization will be more rewarding.
3. Containerization technology is an emerging virtualization technique that plays an

increasingly important role in the future. Developing efficient strategies for scheduling
tasks in containers is a focus for future research.

4. The performance of PPO is not stable enough. As shown in Fig. 6, the results of PPO are
not better than REINFORCE in job chunks No.1, No.2, and No.4. The reason is that the
task types in different job chunks differ. This result indicates that the performance of the
PPO algorithm is not superior to the reinforcement learning algorithm in some specific
scenarios. These specific scenarios need to be studied in the future to determine their
underlying patterns.

5. In the future, cloud computing needs to combine with other computing model like edge
computing, fog computing, serverless computing and quantum computing [25]. How to
integrate these computing models to complete computing tasks and use AI/ML to
optimize them is the main research direction in the future, which also poses a huge
challenge to us.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1889

Acknowledgement
This paper is financially supported by Shandong Key R&D Program (Major Science and
Technology Innovation Project) (2020CXGC010704), Key R & D Projects of Shandong
Province(2020JMRH0201), Key Projects of New and Old Kinetic Energy Conversion 2020,
Qingdao independent innovation major project(20-3-2-12-xx), project of introducing urgently
needed talents in key supported regions of Shandong Province.

References
[1] Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, “Collaborative Service Selection via Ensemble

Learning in Mixed Mobile Network Environments,” Entropy, vol. 19, no. 7, Jul. 2017.
Article (CrossRef Link)

[2] J. Yu, Z. Kuang, B. Zhang, W. Zhang, D. Lin, and J. Fan, “Leveraging Content Sensitiveness and
User Trustworthiness to Recommend Fine-Grained Privacy Settings for Social Image Sharing,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1317–1332, May
2018. Article (CrossRef Link)

[3] J. Yu, B. Zhang, Z. Kuang, D. Lin, and J. Fan, “iPrivacy: Image Privacy Protection by Identifying
Sensitive Objects via Deep Multi-Task Learning,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 5, pp. 1005–1016, May 2017. Article (CrossRef Link)

[4] L. Y. Zuo and Z. B. Cao, “Review of scheduling research in cloud computing,” Application
Research of Computers, vol. 29, no. 11, pp. 4023–4027, 2012. Article (CrossRef Link)

[5] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College,
Cambridge United Kingdom, 1989.

[6] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” arXiv:1312.5602 [cs], Dec.
2013. Article (CrossRef Link)

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
May 2015. Article (CrossRef Link)

[8] J. Stuart, Norvig, and Peter, Artificial Intelligence: A Modern Approach, 1995.
[9] C. He, Y. Yang, and B. Hong, “Cloud Task Scheduling Based on Policy Gradient Algorithm in

Heterogeneous Cloud Data Center for Energy Consumption Optimization,” in Proc. of 2020
International Conference on Internet of Things and Intelligent Applications (ITIA), pp. 1–5, Nov.
2020. Article (CrossRef Link)

[10] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement
learning,” Mach Learn, vol. 8, no. 3, pp. 229–256, May 1992. Article (CrossRef Link)

[11] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An analysis on Alibaba cluster
trace,” in Proc. of 2017 IEEE International Conference on Big Data (Big Data), pp. 2884–2892,
Dec. 2017. Article (CrossRef Link)

[12] “Alibaba Cluster Trace Program,” Alibaba, 2021. Accessed: Jan. 04, 2022. [Online]. Available:
https://github.com/alibaba/clusterdata/blob/4221e02342dd01fd30a9800b19b7f365a3fd5ac8/clust
er-trace-v2018/trace_2018.md

[13] A. F. S. Devaraj, M. Elhoseny, S. Dhanasekaran, E. L. Lydia, and K. Shankar, “Hybridization of
firefly and Improved Multi-Objective Particle Swarm Optimization algorithm for energy efficient
load balancing in Cloud Computing environments,” Journal of Parallel and Distributed
Computing, vol. 142, pp. 36–45, Aug. 2020. Article (CrossRef Link)

[14] H. Peng, W.-S. Wen, M.-L. Tseng, and L.-L. Li, “Joint optimization method for task scheduling
time and energy consumption in mobile cloud computing environment,” Applied Soft Computing,
vol. 80, pp. 534–545, Jul. 2019. Article (CrossRef Link)

[15] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based dynamic task
scheduling for energy-efficient cloud computing,” Future Generation Computer Systems, vol. 108,
pp. 361–371, Jul. 2020. Article (CrossRef Link)

http://doi.org/10.3390/e19070358
http://doi.org/10.1109/TIFS.2017.2787986
http://doi.org/10.1109/TIFS.2016.2636090
http://doi.org/10.3969/j.issn.1001-3695.2012.11.005
http://arxiv.org/abs/1312.5602
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/ITIA50152.2020.9312273
http://doi.org/10.1007/BF00992696
http://doi.org/10.1109/BigData.2017.8258257
http://doi.org/10.1016/j.jpdc.2020.03.022
http://doi.org/10.1016/j.asoc.2019.04.027
http://doi.org/10.1016/j.future.2020.02.018

1890 Yang et al.: Cloud Task Scheduling Based on Proximal Policy Optimization
Algorithm for Lowering Energy Consumption of Data Center

[16] S. Seth and N. Singh, “Dynamic heterogeneous shortest job first (DHSJF): a task scheduling
approach for heterogeneous cloud computing systems,” Int. j. inf. tecnol., vol. 11, no. 4, pp. 653–
657, Dec. 2019. Article (CrossRef Link)

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization
Algorithms,” arXiv:1707.06347 [cs], Aug. 2017. Article (CrossRef Link)

[18] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, Feb. 2015. Article (CrossRef Link)

[19] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust Region Policy Optimization,”
in Proc. of the 32nd International Conference on Machine Learning, pp. 1889–1897, Jun. 2015.
Article (CrossRef Link)

[20] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering,
vol. 9, no. 03, pp. 90–95, May 2007. Article (CrossRef Link)

[21] “SimPy,” Team SimPy, 2020. [Online]. Available:
https://simpy.readthedocs.io/en/latest/index.html

[22] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proc. of the 9th Python
in Science Conference, pp. 56–61, 2010. Article (CrossRef Link)

[23] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for Efficient
Numerical Computation,” Computing in Science Engineering, vol. 13, no. 2, pp. 22–30, Mar. 2011.
Article (CrossRef Link)

[24] Martín Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,”
2015. [Online]. Available: https://www.tensorflow.org/

[25] Sukhpal Singh Gill et al., “AI for Next Generation Computing: Emerging Trends and Future
Directions,” Internet of Things, 2022. Article (CrossRef Link)

Yongquan Yang is currently a lecturer in Ocean University of China, Qingdao, China. He
received a Ph.D. degree from the Ocean University of China in 2013. His current research
interests are in the fields of cloud Computing and big data processing.

Cuihua He is currently a postgraduate student in Ocean University of China, Qingdao,
China. Her current research interests are in the fields of cloud computing and deep
reinforcement learning.

http://doi.org/10.1007/s41870-018-0156-6
http://arxiv.org/abs/1707.06347
http://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v37/schulman15.html
http://doi.org/10.1109/MCSE.2007.55
https://simpy.readthedocs.io/en/latest/index.html
http://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2011.37
https://www.tensorflow.org/
https://doi.org/10.48550/arXiv.2203.04159

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1891

Bo Yin is currently a Professor in Ocean University of China, Qingdao, China. He received
the Ph.D. degree from the Department of Computer Science and Technology, Ocean
University of China, Qingdao, China, in 2006. His current research interests are in the fields
of acoustic systems, embedded system designing, and intelligent control technology.

Zhiqiang Wei is currently a Professor in Ocean University of China, Qingdao, China. He
received Ph.D. degree from Tsinghua University, Beijing, China, in 2001. His current
research interests are in the fields of intelligent information processing, intelligent computing
of big data.

Bowei Hong is currently a postdoctoral researcher in Ocean University of China, Qingdao,
China. She received a Ph.D. degree from the Ocean University of China in 2018. Her current
research interests are in the fields of cloud computing and deep learning.

