• 제목/요약/키워드: energy based design

검색결과 3,513건 처리시간 0.033초

민감부하 보상용 1 MJ 초전도 에너지저장 시스템 제작 및 시험 (Fabrication and Test of a 1 MJ Superconducting Energy Storage System for the Sensitive Load)

  • 성기철;유인근;한성룡;정희종
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.39-43
    • /
    • 2001
  • For several decades researches and development on superconducting magnetic energy storage(SMES) system have been done for efficient electric power management. Korea Electrotechnology Research Institute (KERI) have developed of a 1MJ , 300kVA SMES System for improving power quality in sensitive electric loads. It consists of an IGBT (Insulated Gate Bipolar Transistor) based power conversion module. NbTi mixed matrix conductor superconducting magnet and a cryostat with HTS current leads. We developed the code fro design of a SMES magnet. Which could find the parameters of the SMES magnet having minimum amount of superconductors for the same store denerby. and designed the 1 MJ SMES magnet by using it . And we have design and fabricated cryostat with kA class HTS current leads for a 1 MJ SMES System. This paper describes the design fabrication and test results for a 1MJ SMES System.

  • PDF

에너지 흡수요소로서의 주름관(bellows)의 최적설계에 관한 연구 (Study on the Optimal Design of Bellows as an Energy Absorbing Element)

  • 김행겸;김권희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.121-129
    • /
    • 1997
  • Bellows are suggested as energy absorbing elements for automotive steering systems. A metallic bellows has nearly constant axial collapse load which is desirable as an energy absorbing element for a steering column. Axial collapsability and bending flexibility of bellows can be utilized to reduce upward tilting and backward displacement of steering columns in the early stage of high speed crash. Since bending flexibility of bellows has negative effects on the vibration characteristics of steering columns it is necessary to maximize the first natural frequency of a bellows while maintaining its plastic bending flexibility and axial collapse load. An effort is made to attain optimum design of bellows based upon the Taguchi method. A general guideline for design of bellows is suggested.

  • PDF

프란시스 수차의 설계조건 변동에 따른 수력학적 해석 (Analysis of Hydraulics Power according to Changable Design Conditions for Francis Turbines)

  • 최주석;김일수;문채주;김옥삼
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.690-692
    • /
    • 2005
  • Among many other alternative energy resources, small scale hydropower has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Present low head of Francis turbines and small scale hydro turbines, however, have limitations in the minimum required head and flow rate for efficient operation. This study attempts to develope the Francis turbine which is expected to run efficiently even in very low head and small flow rate, so that the limitations on the conventional small scale hydropower could be alleviated and competition with other alternative energy sources in the changable design conditions could be attained. The Francis turbine of a new concept was designed based on changable design conditions, hydrodynamics and theory of power transmission.

  • PDF

평행사변형 구조를 갖는 매니퓰레이터 동역학의 선형화 및 단순화 설계 (A Design of Linearized and Simplited Arm Dynamics for the Manipulator with a Paralled Drive Mechanism)

  • 최진태;이병룡;정규원
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.855-861
    • /
    • 1989
  • 본 연구에서는 평행 사변형 구조를 갖는 매니퓰레이터의 운동에너지와 포텐셜 에너지를 구하고, 운동 에너지 식에서 매니퓰레이터 관성 모멘트 행렬 (manipulator inertia matrix)를 구한다.

강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구 (An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate)

  • 김대홍;김혁수;유정한
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • 제12권4호
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

초음파 플립칩 접합 모듈의 위상최적화 설계 및 성능 실험 (Design by Topology Optimization and Performance Test of Ultrasonic Bonding Module for Flip-Chip Packaging)

  • 김지수;김종민;이수일
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.113-119
    • /
    • 2012
  • Ultrasonic bonding is the novel packaging method for flip-chip with high yield and low-temperature bonding. The bonding module is a core part of the bonding machine, which can transfer the ultrasonic energy into the bonding spot. In this paper, we propose topology optimization technique which can make new design of boding modules due to the constraints on resonance frequency and mode shapes. The designed bonding module using topology optimization was fabricated in order to evaluate the bonding performance and reliable operation during the continuous bonding process. The actual production models based on the proposed design satisfied the target frequency range and ultrasonic power. The bonding test was performed using flip-chip with lead-free Sn-based bumps, the results confirmed that the bonding strength was sufficient with the designed bonding modules. Also the performance degradation of the bonding module was not observed after the 300-hour continuous process with bonding conditions.

화재하중밀도를 고려한 건축물의 내화설계법에 관한 연구 (A Study on the Fire Resistance Design of Buildings Considering the Fire Load Energy Density)

  • 이평강;이용재;최인창;김회서
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.10-16
    • /
    • 2003
  • 본 연구의 목적은 성능위주의 화재안전설계법에 따른 구획실 용도별 요구내화시간산정을 실시함으로써 현행 내화성능기준의 문제점도출 및 개선방향을 제시하는 것이다. 내화성능기준에 대한 검토를 위해 본 연구에서는 현재 국내의 시방규정에 의해 결정된 요구내화시간과 등가시간공식에 의해 산정된 화재노출상응시간과 비교하였고, 화재노출상응시간을 산정하기 위해 화재하중밀도, 환기계수, 구조재료의 열적특성 그리고 구획실 형상치수 등을 조사하였다.

영농형 태양광 발전 시스템 구축 및 활성화 방안 연구 (Building an Agrophotovoltaic System and Suggesting Activation Plans)

  • 조영혁;조석진;권혁수;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권1호
    • /
    • pp.115-132
    • /
    • 2019
  • Purpose The purpose of this study is to explain the agrophotovolatic system built by the Korea South-East Power Company and to propose methods to activate the agrophotovolatic system for the development of the renewable energy industry. Design/methodology/approach We conducted a three-step simulation in order to design a photovoltaic module, and we built the agrophotovolatic system based on the results of the simulation. Then, we analyzed the monthly generation of power and the rice harvests produced on farmland using the photovoltaic module. Based on the results of the analysis, we proposed institutional improvements to increase the use of the agrophotovolatic system, and we proposed new business models to increase the participation of farmers and business persons. Findings When we compared the agrophotovolastic system with the general photovoltaic system, we found that the agrophotovoltaic system had higher utilization rates and power generation. An analysis of rice produced on farmland using the photovoltaic module showed that more than 80% of the rice produced on general farmland was harvested. We suggested activation plans that involved the revision of the farmland law and the introduction of renewable energy certificate (REC). We also proposed a land lease model and a farmer participation model as two new business models, and we conducted economic evaluations and sensitivity analyses for both models.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • 강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF