• Title/Summary/Keyword: energy barrier theory

Search Result 63, Processing Time 0.024 seconds

Initial Reaction of Hexachlorodisilane on Amorphous Silica Surface for Atomic Layer Deposition Using Density Functional Theory

  • Kim, Ki-Young;Yang, Jin-Hoon;Shin, Dong-Gung;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.443-447
    • /
    • 2017
  • The initial reaction of hexachlorodisilane ($Si_2Cl_6$, HCDS) on amorphous silica ($SiO_2$) surface for atomic layer deposition was investigated using density functional theory. Two representative reaction sites on the amorphous $SiO_2$ surface for HCDS reaction, a surface hydroxyl and a two-membered ring, were considered. The reaction energy barrier for HCDS on both sites was higher than its adsorption energy, indicating that it would desorb from the surface rather than react with the surface. At high temperature range, some HCDSs can have kinetic energy high enough to overcome the reaction energy barrier. The HCDS reaction on top of the reacted HCDS was investigated to confirm its self-limiting characteristics.

Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory

  • Kim, Ji-Su;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.301-305
    • /
    • 2016
  • We investigate proton conduction in a nonstoichiometric ${\Sigma}3$ $BaZrO_3$ (210)[001] tilt grain boundary using density functional theory (DFT). We employ the space charge layer (SCL) and structural disorder (SD) models with the introduction of protons and oxygen vacancies into the system. The segregation energies of proton and oxygen vacancy are determined as -0.70 and -0.54 eV, respectively. Based on this data, we obtain a Schottky barrier height of 0.52 V and defect concentrations at 600K, in agreement with the reported experimental values. We calculate the energy barrier for proton migration across the grain boundary core as 0.61 eV, from which we derive proton mobility. We also obtain the proton conductivity from the knowledge of proton concentration and mobility. We find that the calculated conductivity of the nonstoichiometric grain boundary is similar to those of the stoichiometric ones in the literature.

Submerged Floating Wave Barrier

  • Kee S.T.;Park W.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • The wave interactions with fully submerged and floating dual buoy/vertical porous membrane breakwaters has been investigated in experimentally to validate the developed theory and numerical method in the previous study, in which multi-domain hydro-elastic formulation was carried out in the context of linear wave-body interaction theory and Darcy's law. It is found that the experimental results agrees well with the numerical prediction. Transmission and reflection can be quite reduced simultaneously especially in the region of long waves. The properly tuned system to incoming waves can effectively dissipate wave energy and also offset each other between incident and scattered waves using its hydro-elasticity and geometry.

  • PDF

Computational Study on OH and Cl Initiated Oxidation of 2,2,2-Trifluoroethyl Trifluoroacetate (CF3C(O)OCH2CF3)

  • Singh, Hari Ji;Tiwari, Laxmi;Rao, Pradeep Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1385-1390
    • /
    • 2014
  • Hydrofluoroethers (HFEs) are developed as a suitable for the replacement of environmentally hazardous CFCs and are termed as third generation refrigerants. One of the major products of decomposition of HFEs in the atmosphere is a fluoroester. The present study relates to the OH and Cl initiated oxidation of $CF_3C(O)OCH_2CF_3$ formed from the oxidation of HFE-356mff. The latter is used as a solvent in the industry and reaches the atmosphere without any degradation. Kinetics of the titled molecule has been studied at MPWB1K/6-31+G(d,p) level of theory. Single point energy calculations have been made at G2(MP2) level of theory and barrier heights are determined. The rate constants are calculated using canonical transition state theory. Tunnelling correction are made using one-dimensional Eckart potential barrier. The rate constant calculated during the present study are compared with the experimental values determined using relative rate method and FTIR detection technique.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Force-induced Unbinding Dynamics in a Multidimensional Free Energy Landscape

  • Hyeona, Chang-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.897-900
    • /
    • 2012
  • We examined theory for force-induced unbinding on a two-dimensional free energy surface where the internal dynamics of biomolecules is coupled with the rupture process under constant tension f. We show that only if the transition state ensemble is narrow and activation barrier is high, the f-dependent rupture rate in the 2D potential surface can faithfully be described using an effective 1D energy profile.

Comparison study of heatable window film using ITO and ATO

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.300.2-300.2
    • /
    • 2016
  • Increasing of the demand for energy savings for buildings, thermal barrier films have more attracted. In particular, as heat loss through the windows have been pointed out to major problems in the construction and automobile industries, the research is consistently conducted for improving the thermal blocking performance for windows. The main theory of the technology is reflect the infrared rays to help the cut off the inflow of the solar energy in summer and outflow of the heat from indoors in winter to save the energy on cooling and heating. Furthermore, this is well known for prevent glare, reduces fading caused by harmful ultraviolet radiation and easy to apply on constructed buildings if it made as a film. In addition to these advantages, apply the transparent electrode to eliminate condensation by heating. Generally ITO is used as a transparent electrode, but is has a low stability in environmental factors. In this study, ITO and its alternative, ATO, is deposited by sputtering system and then the characteristic is evaluated each material based thermal barrier thin film. The optical property was measured on wide range of wavelength (200 nm 2500 nm) to know the transparency in visible wavelength and reflectivity in IR wavelength range. The electrical property was judged by sheet resistivity. Finally the changes of the temperature and current of the deposited film was observed while applying a DC power.

  • PDF

Radiation Damage of SiC Detector Irradiated by High Dose Gamma Rays

  • Kim, Yong-Kyun;Kang, Sang-Mook;Park, Se-Hwan;Ha, Jang-Ho;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.87-90
    • /
    • 2006
  • Two SiC radiation detector samples were irradiated by Co-60 gamma rays. The irradiation was performed with dose rates of 5 kGy/hour and 15 kGy/hour for 8 hours, respectively. Metal/semiconductor contacts on the surface were fabricated by using a thermal evaporator in a high vacuum condition. The SiC detectors have metal contacts of Au(2000 ${\AA}$)/Ni(300 ${\AA}$) at Si-face and of Au(2000 ${\AA}$)/Ti(300 ${\AA}$) at C-face. I-V characteristics of the SiC semiconductor were measured by using the Keithley 4200-SCS parameter analyzer with voltage sources included. From the I-V curve, we analyzed the Schottky barrier heights(SBHs) on the basis of the thermionic emission theory. As a result, the 6H-SiC semiconductor showed- similar Schottky barrier heights independent to the dose rates of the irradiation with Co-60 gamma rays.

  • PDF

Ab-initio Study of Hydrogen Permeation though Palladium Membrane (팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산)

  • Cha, Pil-Ryung;Kim, Jin-You;Seok, Hyun-Kwang;Kim, Yu Chan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.

Design of optical directional couplers using Nano-Scale MQWs (나노 양자우물구조를 이용한 광통신용 방향성 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • An optical directional coupler, which consists of quantum wells with nanothickness, is designed by using Modal Transmission Line Theory (MTLT). To demonstrate the validity and usefulness, the propagation characteristics and the coupling efficiencies are rigorously evaluated at nanoscale couplers, which consist of double quantum wells with different effective masses. The numerical result reveals that the coupling efficiency of nanoscale couplers is maximized at a coupling length 2052.3 nm, if the total electron energy is 83.9 meV. Furthermore, the coupler operates as a filter with narrower band as the barrier thickness increases.