Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1385

Computational Study on OH and Cl Initiated Oxidation of 2,2,2-Trifluoroethyl Trifluoroacetate (CF3C(O)OCH2CF3)  

Singh, Hari Ji (Department of Chemistry, DDU Gorakhpur University)
Tiwari, Laxmi (Department of Chemistry, DDU Gorakhpur University)
Rao, Pradeep Kumar (Department of Chemistry, DDU Gorakhpur University)
Publication Information
Abstract
Hydrofluoroethers (HFEs) are developed as a suitable for the replacement of environmentally hazardous CFCs and are termed as third generation refrigerants. One of the major products of decomposition of HFEs in the atmosphere is a fluoroester. The present study relates to the OH and Cl initiated oxidation of $CF_3C(O)OCH_2CF_3$ formed from the oxidation of HFE-356mff. The latter is used as a solvent in the industry and reaches the atmosphere without any degradation. Kinetics of the titled molecule has been studied at MPWB1K/6-31+G(d,p) level of theory. Single point energy calculations have been made at G2(MP2) level of theory and barrier heights are determined. The rate constants are calculated using canonical transition state theory. Tunnelling correction are made using one-dimensional Eckart potential barrier. The rate constant calculated during the present study are compared with the experimental values determined using relative rate method and FTIR detection technique.
Keywords
Atmospheric oxidation; G2(MP2); Eckart barrier; HFEs; TFETFA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Weubbles, D. J. J. Geophys. Res. 1983, 88, 1433.   DOI
2 Solomon, S. Nature 1990, 6291, 347.
3 Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.   DOI
4 Rowland, F. S.; Molina, M. J. Chem. Eng. News. 1994, 72, 8.
5 Ravishankara, R. A.; Turnipseed, A. A.; Jensen, N. R.; Barone, S.; Mills, M.; Howard, C. J.; Solomon, S. Science 1994, 263, 71.   DOI   ScienceOn
6 Imasu, R.; Suga, A.; Matsuno, T. J. Meteorol Soc. Jpn. 1995, 73, 1123.
7 Houghton, J. T. et al. The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, (IPCC), Geneva, 2001.
8 Christensen, L. K.; Wallington, T. J.; Guschin, A.; Hurley, M. D. J. Phys. Chem. A 1999, 103, 4202.   DOI   ScienceOn
9 Oyaro, N.; Sellevag, S. R.; Nielsen, C. J. Environmental Science & Technology 2004, 38, 5567.   DOI   ScienceOn
10 Ninomiya, Y.; Kawasaki, M.; Guschin, A.; Molina, L. T.; Molina, M. J.; Wallington, T. J. Environmental Science & Technology 2000, 34, 2973.   DOI   ScienceOn
11 Wallington, T. J.; Schneider, W. F.; Sehested, J.; Bilde, M.; Platz, J.; Nielsen, O. J.; Christensen, L. K.; Molina, M. J.; Molina, L. T.; Wooldridge, P. W. J. Phys. Chem. A 1997, 101, 8264.
12 Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Atmospheric Chemistry; Wiley: New York, 1986.
13 Mellouki, A.; Le Bras, G.; Sidebottom, H. Chemical Review 2003, 103, 5077.   DOI   ScienceOn
14 Wallington, T. J.; Hurley, M. D.; Fedotov, V.; Morrell, C.; Hancock, G. J. Phys. Chem. A 2002, 106, 8391.   DOI   ScienceOn
15 Nohara, K.; Toma, M.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T. Environmental Science & Technology 2001, 35, 114.   DOI   ScienceOn
16 Blanco, M. B.; Teruel, M. A. Atmospheric Environment 2007, 41, 7330.   DOI   ScienceOn
17 Wallington, T. J.; Guschin, A.; Stein, T. N. N.; Platz, J.; Sehested, J.; Christensen, L. K.; Nielsen, O. J. J. Phys. Chem. A 1998, 102, 11152.
18 Frisch, M. J. et al Gaussian09 (Version C.01), 2010, Gaussian, Inc, Wallingford, CT.
19 Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908.   DOI   ScienceOn
20 Becke, A. D. J. Chem. Phys. 1996, 104, 1040.   DOI
21 Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theor. Comput. 2006, 2, 364.   DOI
22 Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.   DOI
23 Eckart, C. Phys. Rev. 1930, 35, 1303.   DOI
24 Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.   DOI   ScienceOn
25 Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771.   DOI   ScienceOn
26 Johnston, H. S. Gas Phase Reaction Rate Theory; Ronald Press: New York, 1966; p 362.
27 Brown, R. L. J. Res. Natl. Bur. Stand. 1981, 86, 357.   DOI
28 Johnston, H. S.; Heicklen, J. J. Phys. Chem. 1962, 66, 532.   DOI
29 Chuang, Y. Y.; Truhlar, D. G. J. Chem. Phys. 2000, 112, 1221.   DOI
30 Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. Phys. Chem. Ref. Data 1985, 14, Suppl 1, 3rd edn.
31 Ogura, T.; Miyoshi, A.; Koshi, M. Phys. Chem. Chem. Phys. 2007, 9, 5133.   DOI
32 NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101, Release 15b, August 2011, Johnson, Russel, D., Ed.; http://cccbdb.nist.gov/.
33 Blanco, M. B.; Bejan, I.; Barnes, I.; Wiesen, P.; Truel, M. Environmental Science & Technology 2010, 44, 2354.   DOI   ScienceOn
34 Perdew, J. P. Unified theory of exchange and correlation beyond the local density approximation. In: Electronic Structure of Solids, Ziesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin, 11-20.