Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.5.1561

Structure and Intramolecular Proton Transfer of Alanine Radical Cations  

Lee, Gab-Yong (Department of Life Chemistry, Catholic University of Daegu)
Publication Information
Abstract
The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.
Keywords
Alanine radical cation; Intramolecular proton transfer; Hydrogen bond; Energy barrier; Spin density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blanco, S.; Lesarri, A.; Lopez, J. C.; Alonso, J. L. J. Am. Chem. Soc. 2004, 126, 11675.   DOI   ScienceOn
2 Rodriguez-Santiago, L.; Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 2000, 104, 1256.   DOI   ScienceOn
3 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.   DOI
4 Weinhlod, F.; Carpenter J. E. The Structure of Small Molecules and Ions; Plenum: New York, 1988; p 227.
5 Gronert, S.; O'Hair, R. A. J. Am. Chem. Soc. 1995, 117, 2071.   DOI   ScienceOn
6 Stepanian, S. J.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1998, 102, 4623.   DOI   ScienceOn
7 Sodupe, M.; Bertran, J.; Rodriguez-Santiago, L.; Baerends, E. J. J. Phys. Chem. A 1999, 103, 166.   DOI   ScienceOn
8 Braïda, B.; Hiberty, P. C.; Savin, A. J. Phys. Chem. A 1998, 102, 7872.   DOI   ScienceOn
9 Simic, M. G.; Taylor, K. A.; Ward, J. F.; Von Sonntag, C. Oxygen Radicals in Biology and Medicine; Plenum Press: New York, 1988.
10 Davies, K. J. A. Oxidative Damage and Repair: Chemical, Niological and Medical Aspects; Pergamon Press: New York, 1991.
11 Von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor and Francis: London, 1987.
12 Bagheri-Majdi, E.; Ke, Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2004, 108, 11170.   DOI   ScienceOn
13 Sambrano, J. R.; de Souza, A. R.; Queralt, J. J.; Andres, J.; Longo, E. Chem. Phys. Lett. 1998, 294, 1.   DOI
14 Lee, G. Y. J. Comput. Chem. 2009, 30, 2181.
15 Lee, G. Y. J. Phys. Org. Chem. 2010, 23, 91.
16 Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 1997, 101, 9142.   DOI   ScienceOn
17 Simon, S.; Gil, A.; Sodupe, M.; Bertran, J. J. Mol. Struct. (Theochem.) 2005, 727, 191.   DOI
18 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Peterson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dennenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A. Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.; Pittsburgh PA. 2003.
19 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
20 Bertran, J.; Oliva, A.; Rodriguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159.   DOI   ScienceOn
21 Nobrega, G. F.; Sambrano, J. R.; de Souza, A. R.; Quealt, J. J.; Longo, E. J. Mol. Struc. (Theochem.) 2001, 544, 151.   DOI   ScienceOn
22 Iijima, K.; Nakano, M. J. Mol. Struct. 1999, 485, 255.   DOI
23 Csazar, A. G. J. Phys. Chem. 1996, 100, 3541.   DOI   ScienceOn
24 Iijima, K.; Beagley, B. J. Mol. Struct. 1991, 248, 133.   DOI   ScienceOn
25 Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687.   DOI   ScienceOn
26 Csazar, A. G. J. Mol. Struct. 1995, 346, 141.   DOI
27 Godfrey, P. D.; Brown, R. D.; Rodgers, F. M. J. Mol. Struc. 1996, 376, 65.   DOI   ScienceOn
28 Maul, R.; Ortmann, F.; Preuss, M.; Hannewald, K.; Bechstedt, F. J. Comput. Chem. 2007, 28, 1817.   DOI   ScienceOn
29 Donohue, J. J. Am. Chem. Soc. 1950, 72, 949.   DOI
30 Dunitz, J. D.; Ryan, R. R. Acta Crystallogr. 1966, 21, 617.   DOI
31 Simpson, H. J., Jr.; Marsh, R. E. Acta Crystallogr. 1966, 20, 550.   DOI
32 Lehmann, M. S.; Koetzle, T. F.; Hamilton, W. C. J. Am. Chem. Soc. 1972, 94, 2657.   DOI
33 Wu, R.; McMahon, T. B. J. Am. Chem. Soc. 2008, 130, 3065.   DOI   ScienceOn
34 Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313.   DOI   ScienceOn
35 Stadtman, E. R. Ann. Rev. Biochem. 1993, 62, 797.   DOI   ScienceOn
36 Sies, H. Oxidative Stress-Oxidants and Anti-Oxidants; Academic Press: London, 1991.