• Title/Summary/Keyword: energy activation

Search Result 2,834, Processing Time 0.033 seconds

The Effect of Electrode Pattern on the Humidity-sensing Properties of the Resistive Humidity Sensor Based on All-printing Process (인쇄공정으로 제조된 저항형 습도센서의 감습특성에 대한 전극패턴의 영향 연구)

  • Ahn, Hee-Yong;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Based on our experience in developing resistive humidity sensor, interdigital gold electrodes with different fingers and gaps have been fabricated on a glass epoxy (GE) substrate using screen printing techniques. The basic structure of the electrode consisted of a 3-, 4- and 5-fingers with gaps of 310 and 460 ${\mu}m$. Gold electrode/GE was prepared by first printing silver nanopaste, followed by consecutive electroless plating of Cu, Ni and then Au. Copolymer of [2-(methacryloyloxy)ethyl] dimethyl benzyl ammonium chloride (MDBAC) and methyl methacrylate (MMA) was used as a humidity-sensing polyelectrolyte, which was fabricated by a screen printing method on the Au electrode/GE substrate. The flexible humidity sensor showed acceptable linearity between logarithmic impedance and relative humidity in the range of 20-95%RH, low hysteresis of 1.5%RH, good response and recovery time of 75 sec at 1 V, 1 kHz, and $25^{\circ}C$. Electrode construction had a significant influence on the humidity-sensing characteristics of polymeric humidity sensors. The activation energy between electrode and ion conducting polyelectrolyte plays an important role in explaining the differences of humidity sensing characteristics such as temperature dependence, sensitivity, linearity and hysteresis.

Synthesis and Curing Behaviors of Polyisoimide Oligomers with Ethynyl End Groups (Ethynyl 말단기를 갖는 Polyisoimide 올리고머의 합성 및 이들의 경화거동에 관한 연구)

  • Choi, Seok Woo;Kim, Bo Ock;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.774-781
    • /
    • 2014
  • Acetylenic or phenylethynyl end-capped polyisoimide oligomers ($M_w$ 2500 g/mol, 5000 g/mol) based upon 4,4'-diamino diphenyl ether (4,4'-ODA)/4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-ODA/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) were synthesized by using 4-ethynylaniline (4-EA) or 4-phenylethynyl phthalic anhydride (4-PEPA) as an end capper. The incorporation of ethynyl groups were confirmed by FTIR spectroscopy. The isomerization temperature was influenced by molecular weight as well as the backbone structure of polyisoimides oligomers. Thus, polyisoimide oligomers with molecular weight of 2500 g/mol was found to be imidized at temperature $10^{\circ}C$ lower than that for the oligomers with molecular weight of 5000 g/mol. The crosslinking reaction of ethynyl groups occurred at a higher temperature than that for the isoimide/imide isomerization reaction. These two reactions were totally or partially overlapped on the DSC thermograms for the polyisoimide oligomer end-capped with 4-EA. Kinetics of thermal imidization and crosslinking reactions for the 4,4'-ODA/ODPA polyisoimide oligomers end-capped with 4-PEPA were investigated by performing dynamic DSC experiments at heating rate of $10^{\circ}C/min$. The activation energy and pre-exponential factors were 141 kJ/mol and $1.45{\times}10^{13}min^{-1}$ for the imidization reaction and 177 kJ/mol and $2.90{\times}10^{13}min^{-1}$ for the crosslinking reaction, respectively.

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Kinetics of Thermal Inactivation of Peroxidases and Polyphenol Oxidase in Pineapple (Ananas comosus)

  • Lee, Ting Hun;Chua, Lee Suan;Tan, Eddie Ti Tjih;Yeong, Christina;Lim, Chew Ching;Ooi, Siew Yin;Aziz, Ramlan bin Abdul;Aziz, Azila binti;Sarmidi, Mohd Roji bin
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.661-666
    • /
    • 2009
  • The heat tolerance and the inactivation kinetics of peroxidase (POD) and polyphenol oxidase (PPO) in pineapples (Ananas comosus) were studied in the temperature range $45-95^{\circ}C$. The kinetic parameters, such as deactivation rate constant (k), activation energy ($E_a$), and decimal reduction rate (D) of the thermal inactivation process, were determined. POD in pineapples showed biphasic inactivation behavior at temperatures range $45-75^{\circ}C$ but was monophasic at $85-95^{\circ}C$. This indicate that POD has 2 isozymes, namely heat labile and heat resistant, with $E_a$ of 68.79 and 93.23 kJ/mol, respectively. On the other hand, the heat denaturation of pineapple PPO could be described as simple monophasic first-order behavior with $E_a$ of 80.15 kJ/mol. Thus, the results of this study is useful in blanching technology where it shows a shortened time with higher temperature can be applied. The determination of the heat tolerance and inactivation POD and PPO, at different temperature range as done in the present work, was very important to improve the blanching process. This also will help to optimize the pineapple canning process which is one of the most important food industries in many tropical regions.

Characteristics and Action Pattern of Polygalacturonase from Rhizopus oryzae CJ-2114 (Rhizopus oryzae CJ-2114가 생성하는 Polygalacturonase의 특성 및 작용양상)

  • Chung, Yung-Gun;Cho, Young-Je;Kwon, Oh-Jin;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.195-200
    • /
    • 1992
  • Rhizopus oryzae CJ-2114 was selected for its strong polygalacturonase activity among various strains of mold found in soil. The optimum pH for the enzyme activity was 4.0 and optimum temperature was 4$0^{\circ}C$. The activation energy for the polygalacturonase was calculated by Arrhenius equation was 2.048㎉/㏖. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the Km value of 54.05mM with the $V_{max}$ of 13.9m mole/min. The enzyme is relatively stable in acidic condition. The activity of polygalactur-onase was inhibited completely by C $u^{2+}$, P $b^{2+}$ and Z $n^{2+}$, $_Mn^{2+}$ at concentration of 1 mM. The enzyme can be inactivated by the treatment with maleic anhydride and iodine. The results indicate the possible involvement of histidine at active site. When polygalacturonase from Rhizopus oryzae CJ-2114 was reacted with poly-galacturonic acid as a substrate mono-, di-, and oligogalacturonic acid were produced at early and mono-, digalacturonic acid produced at late incubation time. time.

  • PDF

Analysis on the Curriculum of Chemical Engineering Field in Specialized Vocational High School (특성화고 화공계열의 교육과정에 대한 실태 분석)

  • Lee, Kyu-Nyo;Yi, Kwang bok;Kim, So Yeon;Han, Soo Kyong;Rhee, Young-Woo
    • 대한공업교육학회지
    • /
    • v.40 no.2
    • /
    • pp.72-91
    • /
    • 2015
  • This study is aimed at researching and analyzing the actual conditions of the curriculum and career path of chemical engineering field in specialized high school, and seeking for a curriculum improvement plan for activation by means of identity establishment of chemical engineering field. This study surveyed the actual conditions of school (department) regarding chemical engineering, and analyzed an adequacy among the curriculum, department name and acquired license. The results are as follows. Firstly, In order to the chemical engineering field to maintain the identity of chemical engineering and accept the changes in the industrial site, it is desirable for the department name to use the name of applied science, such as Applied Chemical Industry, Nano Chemical Industry, Environmental Chemical Industry, Energy Chemical Industry, Convergence Materials Science and Chemical Engineering, Ceramic Chemical Engineering, Biomolecular and Chemical Engineering, and Food Bio-chemical Engineering, which are derived from chemical engineering, and the revision of curriculum should be included. Secondly, it is necessary to diversify relevant licenses by standard department of chemical engineering field, and clarify the purpose of human resources development and the image of talented, considering the future course of graduates and the demand of industry, for the purpose of improving school-leveled curriculum to raise the possibility of employment. Thirdly, in accordance with the changing paradigm that secondary vocational education is changed from 'just-to-know education (knowledge)' to 'can-do education (capability)', it is necessary to make the performance ability-centered curriculum in which 'chemical engineering industry - chemical engineering vocational education - chemical engineering qualification' are integrated.

Current-Voltage and Impedance Characteristics of ZnO-Zn2BiVO6-Co3O4 Varistor with Temperature (ZnO-Zn2BiVO6-Co3O4 바리스터의 전류-전압 및 임피던스의 온도)

  • Hong, Youn Woo;Kim, You Bi;Paik, Jong Hoo;Cho, Jeong Ho;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2016
  • This study introduces the characteristics of current-voltage (I-V) and impedance variance for $ZnO-Zn_2BiVO_6-Co_3O_4$ (ZZCo), which is sintered at $900^{\circ}C$, according to temperature changes. ZZCo varistor demonstrates dramatic improvement of non-linear coefficient, ${\alpha}=66$, with lower leakage current and higher insulating resistivity than those of ZZ ($ZnO-Zn_2BiVO_6$) from the aspect of I-V curves. While both systems are thermally stable up to $125^{\circ}C$, ZZCo represents a higher grain boundary activation energy with 1.05 eV and 0.94 eV of J-E-T and from IS & MS, respectively, than that of ZZ with 0.73 eV and 0.82 eV of J-E-T and from IS & MS, respectively, in the region above $180^{\circ}C$. It could be attributed to the formation of $V^*_o$(0.41~0.47 eV) as dominant defect in two systems, as well as the defect-induced capacitance increase from 781 pF to 1 nF in accordance with increasing temperature. On the other hand, both the grain boundary capacitances of ZZ and ZZCo are shown to decrease to 357 pF and 349 pF, respectively, while the resistances systems decreased exponentially, in accordance with increasing temperature. So, this paper suggests that the application of newly formed liquid phases as sintering additives in both $Zn_2BiVO_6$ and the ZZCo-based varistors would be helpful in developing commercialized devices such as chips, disk-type ZnO varistors in the future.

Studies on the Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Properties and Application of $\beta$-Glactosidase- (Lactobacillus sporogenes에 의한 $\beta$-Galactosidase 생산에 관한 연구 -$\beta$-Galactosidase의 효소학적 성질 및 응용-)

  • 김영만;이정치;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.355-359
    • /
    • 1985
  • The purified $\beta$-galactosidase from L. sporogenes was most active at pH 7.0 and 6$0^{\circ}C$ with O-nitrophenyl-$\beta$-D-galactopyranoside (ONPG) in 0.05 M phosphate buffer. It was stable over a pH range from 5.0 to 9.0 and lost less than 10% of its activity after heating for 30 minutes at 6$0^{\circ}C$ and pH 7.0. All the mineral ions examined in this work showed no significant activating effect, whereas L-cysteine exerted a great stimnlatory effect on the enzyme activity at the concentration of 10 mM. The Km values were 1.2 mM for ONPG and 33.3 mM for lactose. Approximately 85% of lactose in cow's milk, in 10% skim milk and in 5% lactose solution was hydrolyzed after 4 hours incubation at 6$0^{\circ}C$ with 2 units of the purified $\beta$-galactosidase per $m\ell$ of the substrate solutions. The $\beta$-galactosidase from L. sporogenes, therefore, is considered to be suitable for hydrolysis of lactose in milk and other dairy products.

  • PDF

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF