• Title/Summary/Keyword: energy accumulation

Search Result 509, Processing Time 0.025 seconds

The Human Capital Accumulation Effect of New and Renewable Energy Human Resource Development Programs (신재생에너지 인력양성의 인적자본 축적 효과)

  • Lee, You-Ah;Kim, Jin-Soo;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.49-55
    • /
    • 2009
  • Human resource for the new and renewable energy technology is an important factor in the respect of the sustainable growth and energy security. In this paper, we focused on measuring the economic effect of human resource development on new and renewable energy development programs. The human capital accumulation model developed by Mincer (1974) was modified in terms of the rate of the researchers' investment in human capital. As a result of a empirical case study, the value of human capital was estimated by 102 million Korean won per year worth 18% of the project labor cost. In case of the assumption of 100% participation of researchers, the level of human capital accumulation increased to 914 million Korean won per year. These results imply that the new and renewable energy development programs has been successful, on the concept of learning by doing, in terms of providing the researchers with opportunities to accumulate human capital.

  • PDF

Maximization of Poly-$\beta$-Hydroxybutyrate Accumulation by Potassium Limitation in Methylobacterium organophilum and Its Related Metabolic Analysis

  • Kim, Seon-Won;Kim, Pil;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.140-146
    • /
    • 1999
  • When methanol was the sole carbon source, Methylobacterium organophilum NCIB 11278, a facultative methylotroph, accumulated Poly-$\beta$-hydroxybutyrate (PHB) as 59% (w/w) of dry cell weight under potassium limitation, 37% under sulfate limitation, and 33% under nitrogen limitation. Based on a stoichiometric analysis of PHB synthesis from methanol, it was suspected that PHB synthesis is accompanied by the overproduction of energy, either 6-10 ATP and 1 $FADH_2$ or 6 ATP and 3 NADPH to balance the NADH requirement, per PHB monomer. This was confirmed by observation of increased intracellular ATP levels during PHB accumulation. The intracellular ATP with limited potassium, sulfate, and ammonium increased to 0.185, 0.452, and 0.390 $\mu$moles ATP/g Xr (residual cell mass) during PHB accumulation, respectively. The intracellular ATP level under potassium limitation was similar to that when there was no nutrient limitation and no PHB accumulation, 0.152- 0.186 $\mu$moles ATP/g Xr. We propose that the maximum PHB accumulation observed when potassium was limited is a result of the energy balance during PHB accumulation. Microorganisms have high energy requirements under potassium limitation. Enhanced PHB accumulation, in ammonium and sulfate limited conditions with the addition of 2,4-dinitrophenol, which dissipates surplus energy, proves this assumption. With the addition of 1 mM of 2,4-dinitrophenol, the PHB content increased from 32.4% to 58.5% of dry cell weight when nitrogen limited and from 15.1 % to 31.0% of dry cell weight when sulfate limited.

  • PDF

Dust accumulation effect on solar thermal energy systems performance

  • Alsaad, Mohammad A.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.157-165
    • /
    • 2015
  • This research investigates the effect of natural dust accumulation on the glass cover of solar thermal energy conversion systems. Four similar, locally manufactured, flat plate solar collectors are used. All collectors are South oriented with tilt angle of $40^{\circ}$. The glass cover of one collector is kept clean of dust during the experimental period while the second collector is cleaned at the beginning of each month. The third collector is cleaned every two months while the fourth collector is kept un-cleaned throughout the experimental period of four months. The calculated parameters are the solar heat gain rates and the corresponding values of the thermal efficiency. The result of the present work indicates that the percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of one and two months is 11.4% and 17.0%, respectively. The percentage decrease of thermal efficiency during the same duration periods is 4.0% and 6.1%, respectively. The percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of three and four months is 27.8% and 31.9%, respectively. The percentage decrease of monthly thermal efficiency during the same duration period is 10.2% and 11.3%, respectively.

A Study on the Ultra-Low Energy Ion Implantation using Local Cell Damage Accumulation Model (국부 셀 격자 결함 모델을 사용한 극 저 에너지 이온 주입에 관한 연구)

  • Kwon, Oh-Keun;Kang, Jeong-Won;Hwang, Ho-Jung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.9-16
    • /
    • 1999
  • We have investigated effects of local damage accumulation for ultra-low energy As and B ion implant using highly efficient molecular dynamics(MD) scheme. We simulated ion implantation by MD simulation using recoil ion approximation (RIA) method and local cell damage accumulation (LCDA) model proposed in the paper. Local damage accumulation probability function consisted of deposited energy in a unit cell, implant dose rate, target material, projectile atom, and recoil event number. The simulated results were good agreement with the experimental and other simulated results. The MDRANGE results without damage accumulation were different from SIMS data in the tail region. We also simulated 2 dimensional dopant and damage profiles using the local damage accumulation model and recoil ion approximation method.

  • PDF

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Cathodic Stripping Voltammetric Study of Tin(Ⅱ)-Cupferron Complex (Tin(Ⅱ)-Cupferron 착물에 대한 음극벗김전압전류법적 연구)

  • Sohn, Se Chul;Seo, Moo Yul;Jee, kwang Yong;Choi, In kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 1995
  • Differential-pulse cathodic stripping voltammetry was applied to the Sn(II)-cupferron complex in 0.1 M acetate buffer solution (pH 4.20). Effects of solution pH, ligand concentration, accumulation potential, and accumulation time on the reduction peak current for the adsorptive complex of Sn(II)-cupferron were investigated. Interferences by other metal cations that affected on reduction peak current were also discussed. The detection limit was 3.1${\times}$10-9 M (0.37 ppb) of Sn(II) with 60 seconds accumulation time. The relative standard deviation (n=8) for 5${\times}$10-8 M Sn(II) was 3.0%.

  • PDF

Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression

  • Wu, Na;Liang, Zhengzhao;Zhou, Jingren;Zhang, Lizhou
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.55-66
    • /
    • 2020
  • The damage or failure of coal rock is accompanied by energy accumulation, dissipation and release. It is crucial to study the energy evolution characteristics of coal rock for rock mechanics and mining engineering applications. In this paper, coal specimens sourced from the Xinhe mine located in the Jining mining area of China were initially subjected to uniaxial compression, and the micro-parameters of the two-dimensional particle flow code (PFC2D) model were calibrated according to the experimental test results. Then, the PFC2D model was used to subject the specimens to substantial uniaxial compression, and the energy evolution laws of coal specimens with various schemes were presented. Finally, the elastic energy storage ratio m was investigated for coal rock, which described the energy conversion in coal specimens with various arrangements of preformed holes. The arrangement of the preformed holes significantly influenced the characteristics of the crack initiation stress and energy in the prepeak stage, whereas the characteristics of the cumulative crack number, failure pattern and elastic strain energy during the loading process were similar. Additionally, the arrangement of the preformed holes altered the proportion of elastic strain energy Ue in the total energy in the prepeak stage, and the probability of rock bursts can be qualitatively predicted.

Studies of electric double layer capacitors used for a storage battery of dye sensitized solar cell energy (염료감응형 태양전지의 축전지로 사용되는 전기이중층콘덴서에 대한 연구)

  • Choi, Jin-Young;Lee, Im-Geun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.673-676
    • /
    • 2005
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell(DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results. the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

  • PDF