Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.1.055

Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression  

Wu, Na (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Liang, Zhengzhao (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Zhou, Jingren (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University)
Zhang, Lizhou (Chongqing Survey Institute)
Publication Information
Geomechanics and Engineering / v.20, no.1, 2020 , pp. 55-66 More about this Journal
Abstract
The damage or failure of coal rock is accompanied by energy accumulation, dissipation and release. It is crucial to study the energy evolution characteristics of coal rock for rock mechanics and mining engineering applications. In this paper, coal specimens sourced from the Xinhe mine located in the Jining mining area of China were initially subjected to uniaxial compression, and the micro-parameters of the two-dimensional particle flow code (PFC2D) model were calibrated according to the experimental test results. Then, the PFC2D model was used to subject the specimens to substantial uniaxial compression, and the energy evolution laws of coal specimens with various schemes were presented. Finally, the elastic energy storage ratio m was investigated for coal rock, which described the energy conversion in coal specimens with various arrangements of preformed holes. The arrangement of the preformed holes significantly influenced the characteristics of the crack initiation stress and energy in the prepeak stage, whereas the characteristics of the cumulative crack number, failure pattern and elastic strain energy during the loading process were similar. Additionally, the arrangement of the preformed holes altered the proportion of elastic strain energy Ue in the total energy in the prepeak stage, and the probability of rock bursts can be qualitatively predicted.
Keywords
coal specimen; preformed hole; particle flow code (PFC); energy accumulation; energy dissipation; eastic energy storage ratio;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Wong, R.H.C., Lin, P., and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017.   DOI
2 Zhang, M.S., Wang, S.H., and Yang, Y. (2011), "Numerical simulation of jointed rock mass constitutive model and its validation", Eng. Mech., 28(5), 26-30. https://doi.org/10.1631/jzus.A1000257.
3 Zitto, M.E., Piotrkowski, R., Gallego, A., Sagasta, F. and Benavent-Climent A. (2015), "Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission", Mech. Syst. Signal Proc., 60, 75-89. https://doi.org/10.1016/j.ymssp.2015.02.006.   DOI
4 Bagde, M.N. and Petroš, V. (2009), "Fatigue and dynamic energy behaviour of rock subjected to cyclical loading", Int. J. Rock Mech. Min. Sci., 46(1), 200-209. https://doi.org/10.1016/j.ijrmms.2008.05.002.   DOI
5 Bratov, V. and Petrov, Y. (2007), "Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth", Int. J. Solids Struct., 44(7-8), 2371-2380. https://doi.org/10.1016/j.ijsolstr.2006.07.013.   DOI
6 Bruning, T., Karakus, M., Nguyen, G.D. and Goodchild, D. (2018), "Experimental Study on the Damage Evolution of Brittle Rock Under Triaxial Confinement with Full Circumferential Strain Control", Rock Mech. Rock Eng., 51(11), 3321-3341. https://doi.org/10.1007/s00603-018-1537-7.   DOI
7 Calleja, J. and Nemcik, J. (2016), "Coalburst Causes and Mechanisms", Proceedings of the Coal Operators Conference, Wollongong, Australia, February.
8 Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.   DOI
9 Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(4), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.   DOI
10 Fan, L. and Liu, S. (2017), "A conceptual model to characterize and model compaction behavior and permeability evolution of broken rock mass in coal mine gobs", Int. J. Coal Geol., 172, 60-70. https://doi.org/10.1016/j.coal.2017.01.017.   DOI
11 Gong, B., Jiang, Y. and Chen, L. (2019) "Feasibility investigation of the mechanical behavior of methane hydrate-bearing specimens using the multiple failure method", J. Nat. Gas. Sci. Eng., 102915. https://doi.org/10.1016/j.jngse.2019.102915.
12 Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks". J. Geophys. Res. Solid Earth, 105(B7), 16683-16697. https://doi.org/10.1029/2000jb900085.   DOI
13 Hebblewhite, B. and Galvin, J. (2017), "A review of the geomechanics aspects of a double fatality coal burst at Austar Colliery in NSW, Australia in April 2014", Int. J. Min. Sci. Technol., 27(1), 3-7. https://doi.org/10.1016/j.ijmst.2016.10.002.   DOI
14 Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression", Fatigue Fract. Eng. Mater. Struct., 42(6), 1341-1356. https://doi.org/10.1111/ffe.12990.   DOI
15 Jin, P.J., Wang, E.Y. and Song, D.Z. (2017), "Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory" Geomech. Eng., 12(4), 627-637. https://doi.org/10.12989/gae.2017.12.4.627.   DOI
16 Jose, A., Sanchidrian, P.S. and Lopez, L.M. (2007), "Energy components in rock blasting", Int. J. Rock Mech. Min. Sci., 44(1), 130-147. https://doi.org/10.1016/j.ijrmms.2006.05.002.   DOI
17 Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.   DOI
18 Lin, P., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017.   DOI
19 Fan, L. and Liu, S. (2019), "Fluid-dependent shear slip behaviors of coal fractures and their implications on fracture frictional strength reduction and permeability evolutions", Int. J. Coal Geol., 212, 103235. https://doi.org/10.1016/j.coal.2019.103235.   DOI
20 Li, Y.H., Peng, J.Y., Zhang, F.P. and Qiu, Z.G. (2016) "Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading", Eng. Geol., 213(4), 64-73. https://doi.org/10.1016/j.enggeo.2016.08.006.   DOI
21 Marek, U. (2009), "Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA", Proc. Earth Planet. Sci., 1(1), 54-59. https://doi.org/10.1016/j.proeps.2009.09.011.   DOI
22 Mark, C. (2016), "Coal bursts in the deep longwall mines of the United States", Int. J. Coal Sci. Technol., 3(1), 1-9. https://doi.org/10.1007/s40789-016-0102-9.   DOI
23 Mark, C. and Gauna, M. (2016), "Evaluating the risk of coal bursts in underground coal mines", Int. J. Min. Sci. Technol., 26(1), 47-52. https://doi.org/10.1016/j.ijmst.2015.11.009.   DOI
24 Mu, W., Li, L., Yang, T., Yu, G. and Han, Y. (2019), "Numerical investigation on a grouting mechanism with slurry-rock coupling and shear displacement in a single rough fracture", Bull. Eng. Geol. Environ., 4, 1-19. https://doi.org/10.1007/s10064-019-01535-w.
25 Munoz, H., Taheri, A. and Chanda, E.K. (2016), "Rock drilling performance evaluation by an energy dissipation based rock brittleness index", Rock Mech. Rock Eng., 49(8), 3343-3355. https://doi.org/10.1007/s00603-016-0986-0.   DOI
26 Sarfarazi, V., Haeri, H., Shemirani, A.B. and Nezamabadi, M.F. (2018), "A fracture mechanics simulation of the pre-holed concrete Brazilian discs", Struct. Eng. Mech., 66(3), 343-351. https://doi.org/10.12989/sem.2018.66.3.343.   DOI
27 Nugroho A. and Purnama A.B. (2015), "Displacement distribution model of andesite rock mass due to blasting activity using finite element method", Indo. Min. J., 18(2), 47-58. https://doi.org/10.30556/imj.Vol18.No2.2015.289.
28 Park J.W., Park D., Ryu D.W., Choi B.H. and Park E.S. (2014), "Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage", Eng. Geol., 181, 142-156. https://doi.org/10.1016/j.enggeo.2014.07.006.   DOI
29 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.   DOI
30 Sagasta, F., Zitto, M.E., Piotrkowski, R., Benavent-Climent, A., Suarez, E. and Gallego, A. (2018), "Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings", Mech. Syst. Signal Proc., 102, 262-277. https://doi.org/10.1016/j.ymssp.2017.09.022.   DOI
31 Singh, S.P. (1988), "Burst energy release index", Rock Mech. Rock Eng., 21(2), 149-155. https://doi.org/10.1007/BF01043119.   DOI
32 Steffler, E.D., Epstein, J.S., and Conley, E.G. (2003), "Energy partitioning for a crack under remote shear and compression", Int. J. Fract., 120(4), 563-580. https://doi.org/10.1023/A:1025511703698.   DOI
33 Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded-sandstone: Use of acoustic emission", Ultrasonics, 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.   DOI
34 Sujatha, V. and Kishen, J.C. (2003), "Energy release rate due to friction at bimaterial interface in dams", J. Eng. Mech., 129(7), 793-800. https://doi.org/10.1061/(asce)0733-9399(2003)129:7(793).   DOI
35 Wang, J., Ning, J.G, Qiu, P.Q., Yang, S. and Shang, H.F. (2019), "Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study", Geomech. Eng., 17(4), 375-383. https://doi.org/10.12989/gae.2019.17.4.375.   DOI