• Title/Summary/Keyword: endoplasmic reticulum (ER) stress

Search Result 171, Processing Time 0.027 seconds

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Spatio-Temporal Expression Pattern of Grp 78, a Putative Hoxc8 Downstream Target Gene, During Murine Embryogenesis

  • Kang Jin Joo;Kwon Yunjeong;Lee Eun Young;Park Hyoung Woo;Yang Hye-Won;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Grp78, discovered as one of the putative target genes of Hoxc8, is a highly conserved stress protein and functions as a molecular chaperone in the endoplasmic reticulum (ER). In order to see the stage-specific expression pattern of Grp78 during development, mouse embryos from day 7.5 to 17.5 p.c. were isolated, and RT-PCR as well as in situ hybridization was performed. When RT-PCR was performed using Grp78 specific primers, periodic expression pattern was detected. And also a region-specific expression pattern was detected with a strong expression in the trunk part of day 11.5 p.c. embryo, like that of Hoxc8. When in situ hybridization was performed, Grp78 was revealed to be expressed in the endoderm, somite, neuroepithelium cells of neural tube in early embryos. In the case of late embryos, Grp78 expression was detected in the liver, segmental bronchus within cranial lobe of lung, ossification center within the cartilage primordium of rib and vertebra, submandibular gland, as well as metanephros. These expression patterns are very much similar to those of Hoxc8. Since Hoxc8 has been reported to regulate apoptosis during organogenesis, it might be possible that the apoptotic function could have been conveyed through the expression of Grp78, implying that the Grp78 is one of the Hoxc8 downstream target genes.

  • PDF

Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism

  • Park, Jeongmin;Joe, Yeonsoo;Ryter, Stefan W.;Surh, Young-Joon;Chung, Hun Taeg
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.292-300
    • /
    • 2019
  • Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken (닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향)

  • An, Young Sook;Park, Jeong Geun;Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1672-1679
    • /
    • 2012
  • The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

Characterization of Anti-inflammation Effect of Aqueous Extracts from Phellinus baumii (바우미 상황버섯 추출물의 항염증 효과에 관한 연구)

  • Kim, Hye-Min;Lee, Dong-Hee
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.179-183
    • /
    • 2010
  • This study is to characterize the postulated anti-inflammatory effect of the hot water extracts from the Phellinus baumii. RAW264.7, macrophage cell line, was activated by lipopolysaccharide (LPS) and, further, treated with Phellinus baumii's aqueous extract. When the cultured macrophage cells were treated with LPS, they show typical signs of endoplasmic reticulum stress (ERS) and an increment in secretion of inflammatory cytokine compared to the non-treated control: The expression of glucose-regulated protein78 (Grp78), Grp94, and C/EBP homologous protein/GADD 153 (CHOP) increased along with augmented secretion of interlukin-6. Cellular nitric oxide content also significantly went up in comparison to the non-LPS treatment. When the LPS-treated RAW264.7 was treated with the aqueous Phellinus baumii extracts, however, the expression of ERS markers markedly reduced and the release of nitric oxide declined. Also, the expression of induced nitric oxide synthase (iNOS) notably diminished similarly as the NO content. In conclusion, this study strongly indicated that aqueous Phellinus baumii extract can be utilized directly as anti-inflammation agent and serves as a source of functional ingredient to lessen the inflammation.

Anti-stress and Sleep-enhancing Effects of Ptecticus tenebrifer Water Extract Through the Regulation of Corticosterone and Melatonin Levels (코르티코스테론 및 멜라토닌 수치 조절을 통한 동애등에 물 추출물의 항스트레스 및 수면 개선 효과)

  • Oh, Dool-Ri;Ko, Haeju;Hong, Seong Hyun;Kim, Yujin;Oh, Kyo-Nyeo;Kim, Yonguk;Bae, Donghyuck
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.601-610
    • /
    • 2022
  • P. tenebrifer (PT) belongs to the Diptera order and Stratiomyidae family. Recently, insect industry have been focused as food, animal feed and environmental advantages. γ-aminobutyric acid (GABA) and melatonin have been associated with regulating sleep and depression. GABA is the primary inhibitory neurotransmitter and is synthesized via biotransformation of monosodium glutamate (MSG) to GABA by lactic acid bacteria. In this study, we first used a GABA-enhanced PT extract, wherein GABA was enhanced by feeding MSG to PT. The underlying mechanisms preventing stress and insomnia were investigated in a corticosterone (CORT)-induced endoplasmic reticulum (ER) stress and chronic restraint stress (CRS)-exposed mouse model, as well as in pentobarbital (45 mg/kg)-induced sleep behaviors in mice. In the present study, the GABA peak was detected in high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) analysis and showed in Ptecticus tenebrifer water extract (PTW) but not in non-PTW extract. The results showed that PTW and Ptecticus tenebrifer with 70% ethanol extract (PTE) exerted neuroprotective effects by protecting against CORT-induced downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP-response element binding protein (CREB) expression. In addition, PTW (300 mg/kg) significantly reduced CORT levels in CRS-exposed mice. Furthermore, PTW (100 and 300 mg/kg) significantly reduced sleep latency and increased total sleep duration in pentobarbital (45 mg/kg)-induced sleeping behaviors, which was related to serum melatonin levels. In conclusion, our results suggest that PTW exerts anti-stress and sleep-enhancing effects by regulating serum CORT and melatonin levels.

Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target (암 치료 표적으로써 prostate apoptosis response-4 (Par-4))

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.947-952
    • /
    • 2015
  • Prostate apoptosis response-4 (Par-4) was originally identified in androgen-independent prostate cancer cells undergoing apoptosis. Par-4 is ubiquitously expressed in normal cells and tissues, but it is downregulated in several types of cancers. Par-4 is a 38 kDa tumor suppressor protein encoded by the PARW gene. Par-4 promotes apoptosis in a variety of cancerous cells, but not in normal cells. In this review, we focused on the structure, expression and function of Par-4 in apoptotic signaling pathway. Functional domains of Par-4 include two nuclear localization sequences (NLS), a leucine zipper (LZ) domain, a nuclear export sequence (NES) and selective for apoptosis in cancer cell (SAC) domain. Many studies have underlined the importance of Par-4 in preventing cancer development. The activity of Par-4 is differently regulated by localization of intracellular and extracellular Par-4. Intracellular Par-4 inhibits Akt- and NF-κB-mediated cell survival pathways and downregulates Bcl-2 expression. Extracellular Par-4 activates the extrinsic apoptotic pathway by binding to cell surface receptor GRP78, a stress response protein that is in the endoplasmic reticulum (ER). Endogenous Par-4 sensitizes cancer cells to various apoptotic stimuli, while exogenous Par-4 enhances SAC domain-dependent apoptosis in cancer cells, but not normal cells. Therefore, Par-4 is an attractive target for cancer therapy.

Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin (인체 락토페린 생산 형질전환 가시오갈피 배양세포)

  • Jo Seung-Hyun;Kwon Suk-Yoon;Kim Jae-Whune;Lee Ki-Teak;Kwak Sang-Soo;Lee Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Lactoferrin is an iron-binding glycoprotein with many biological roles, including the protection against microbial and virus infection, stimulation of the immune system. We developed the transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing the human lactoferrin (hLf) protein following Agrobacterium tumefaciens-mediated transformation. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to hLf cDNA under the control of an oxidative stress-inducible SWPA2 promoter was engineered. Transgenic Siberian ginseng cultured cells to produce a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analysis. ELISA and western blot analysis showed that full length-hLf protein was synthesized in the transgenic cells. The production of hLf increased proportionally to cell growth and reached a maximal (up to 3% of total soluble proteins) at the stationary phase. These results suggest that the transgenic Siberian ginseng cultured cells in this study will be biotechnologically useful for the commercial production of medicinal plant cell cultures to produce hLf protein.