Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0223

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells  

Ly, Luong Dai (Department of Physiology, Yonsei University Wonju College of Medicine)
Ly, Dat Da (Department of Physiology, Yonsei University Wonju College of Medicine)
Nguyen, Nhung Thi (Department of Physiology, Yonsei University Wonju College of Medicine)
Kim, Ji-Hee (Mitohormesis Research Center, Yonsei University Wonju College of Medicine)
Yoo, Heesuk (National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University)
Chung, Jongkyeong (National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University)
Lee, Myung-Shik (Severance Biomedical Science Institute, Yonsei University College of Medicine)
Cha, Seung-Kuy (Department of Physiology, Yonsei University Wonju College of Medicine)
Park, Kyu-Sang (Department of Physiology, Yonsei University Wonju College of Medicine)
Abstract
Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.
Keywords
cytosolic $Ca^{2+}$ overload; lipotoxicity; mitochondrial $Ca^{2+}$ uniporter; oxidative stress; pancreatic ${\beta}$-cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hara, T., Mahadevan, J., Kanekura, K., Hara, M., Lu, S., and Urano, F. (2014). Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology 155, 758-768.   DOI
2 Karaskov, E., Scott, C., Zhang, L., Teodoro, T., Ravazzola, M., and Volchuk, A. (2006). Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147, 3398-3407.   DOI
3 Kimura, S., Noda, T., and Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460.   DOI
4 Lee, J.W., Kim, W.H., Yeo, J., and Jung, M.H. (2010). ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Mol. Cells 30, 545-549.   DOI
5 Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783-792.   DOI
6 Ly, L.D., Xu, S., Choi, S.K., Ha, C.M., Thoudam, T., Cha, S.K., Wiederkehr, A., Wollheim, C.B., Lee, I.K., and Park, K.S. (2017). Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49, e291.   DOI
7 Mancini, A.D. and Poitout, V. (2013). The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab. 24, 398-407.   DOI
8 Oh, Y.S., Bae, G.D., Baek, D.J., Park, E.Y., and Jun, H.S. (2018). Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. (Lausanne) 9, 384.   DOI
9 Martino, L., Masini, M., Novelli, M., Beffy, P., Bugliani, M., Marselli, L., Masiello, P., Marchetti, P., and De Tata, V. (2012). Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS One 7, e36188.   DOI
10 Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022.   DOI
11 Panahi, G., Pasalar, P., Zare, M., Rizzuto, R., and Meshkani, R. (2018). MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-kappaB pathways and ROS production in HepG2 cells. PLoS One 13, e0196580.   DOI
12 Park, H.W. and Lee, J.H. (2014). Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385-2386.   DOI
13 Park, H.W., Park, H., Semple, I.A., Jang, I., Ro, S.H., Kim, M., Cazares, V.A., Stuenkel, E.L., Kim, J.J., Kim, J.S., et al. (2014). Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat. Commun. 5, 4834.   DOI
14 Quan, X., Nguyen, T.T., Choi, S.K., Xu, S., Das, R., Cha, S.K., Kim, N., Han, J., Wiederkehr, A., Wollheim, C.B., et al. (2015). Essential role of mitochondrial $Ca^{2+}$ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 290, 4086-4096.   DOI
15 Satir, B.H. and Pampliega, O. (2016). Methods to study interactions between ciliogenesis and autophagy. Methods Mol. Biol. 1454, 53-67.   DOI
16 Ren, T., Zhang, H., Wang, J., Zhu, J., Jin, M., Wu, Y., Guo, X., Ji, L., Huang, Q., Zhang, H., et al. (2017). MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene 36, 5897-5909.   DOI
17 Rorsman, P. and Ashcroft, F.M. (2018). Pancreatic $\beta$-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117-214.   DOI
18 Salgin, B., Ong, K.K., Thankamony, A., Emmett, P., Wareham, N.J., and Dunger, D.B. (2012). Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 3302-3309.   DOI
19 Tarasov, A.I., Semplici, F., Ravier, M.A., Bellomo, E.A., Pullen, T.J., Gilon, P., Sekler, I., Rizzuto, R., and Rutter, G.A. (2012). The mitochondrial $Ca^{2+}$ uniporter MCU is essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS One 7, e39722.   DOI
20 Tomar, D., Jana, F., Dong, Z., Quinn, W.J., 3rd, Jadiya, P., Breves, S.L., Daw, C.C., Srikantan, S., Shanmughapriya, S., Nemani, N., et al. (2019). Blockade of MCU-mediated $Ca^{2+}$ uptake perturbs lipid metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep. 26, 3709-3725.e7.   DOI
21 Tu, B.P. and Weissman, J.S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341-346.   DOI
22 Szydlowska, K. and Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium 47, 122-129.   DOI
23 Weissmann, N., Sydykov, A., Kalwa, H., Storch, U., Fuchs, B., Mederos y Schnitzler, M., Brandes, R.P., Grimminger, F., Meissner, M., Freichel, M., et al. (2012). Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat. Commun. 3, 649.   DOI
24 Xu, S., Nam, S.M., Kim, J.H., Das, R., Choi, S.K., Nguyen, T.T., Quan, X., Choi, S.J., Chung, C.H., Lee, E.Y., et al. (2015). Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 6, e1976.   DOI
25 Yi, M., Weaver, D., and Hajnoczky, G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167, 661-672.   DOI
26 Zhang, J., Li, Y., Jiang, S., Yu, H., and An, W. (2014). Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis. Am. J. Physiol. Cell Physiol. 306, C279-C290.   DOI
27 Zummo, F.P., Cullen, K.S., Honkanen-Scott, M., Shaw, J.A.M., Lovat, P.E., and Arden, C. (2017). Glucagon-like peptide 1 protects pancreatic $\beta$-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes 66, 1272-1285.   DOI
28 Wollheim, C.B. and Maechler, P. (2002). Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51 Suppl 1, S37-S42.   DOI
29 Back, S.H. and Kaufman, R.J. (2012). Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767-793.   DOI
30 Arruda, A.P. and Hotamisligil, G.S. (2015). Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381-397.   DOI
31 Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U. S. A. 99, 1115-1122.   DOI
32 Charles, M.A., Eschwege, E., Thibult, N., Claude, J.R., Warnet, J.M., Rosselin, G.E., Girard, J., and Balkau, B. (1997). The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40, 1101-1106.   DOI
33 Choi, S., Quan, X., Bang, S., Yoo, H., Kim, J., Park, J., Park, K.S., and Chung, J. (2017). Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J. Biol. Chem. 292, 14473-14485.   DOI
34 Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309-1316.   DOI
35 Choi, S.E., Kim, H.E., Shin, H.C., Jang, H.J., Lee, K.W., Kim, Y., Kang, S.S., Chun, J., and Kang, Y. (2007). Involvement of $Ca^{2+}$-mediated apoptotic signals in palmitate-induced MIN6N8a beta cell death. Mol. Cell. Endocrinol. 272, 50-62.   DOI
36 Cnop, M., Ladriere, L., Igoillo-Esteve, M., Moura, R.F., and Cunha, D.A. (2010). Causes and cures for endoplasmic reticulum stress in lipotoxic beta-cell dysfunction. Diabetes Obes. Metab. 12 Suppl 2, 76-82.
37 Cunha, D.A., Hekerman, P., Ladriere, L., Bazarra-Castro, A., Ortis, F., Wakeham, M.C., Moore, F., Rasschaert, J., Cardozo, A.K., Bellomo, E., et al. (2008). Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 121, 2308-2318.   DOI
38 da Cunha, F.M., Torelli, N.Q., and Kowaltowski, A.J. (2015). Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid. Med. Cell. Longev. 2015, 482582.
39 De Stefani, D., Patron, M., and Rizzuto, R. (2015). Structure and function of the mitochondrial calcium uniporter complex. Biochim. Biophys. Acta 1853, 2006-2011.   DOI
40 Eletto, D., Chevet, E., Argon, Y., and Appenzeller-Herzog, C. (2014). Redox controls UPR to control redox. J. Cell Sci. 127, 3649-3658.   DOI
41 Gilon, P., Chae, H.Y., Rutter, G.A., and Ravier, M.A. (2014). Calcium signaling in pancreatic beta-cells in health and in Type 2 diabetes. Cell Calcium 56, 340-361.   DOI
42 Gustavo Vazquez-Jimenez, J., Chavez-Reyes, J., Romero-Garcia, T., Zarain-Herzberg, A., Valdes-Flores, J., Manuel Galindo-Rosales, J., Rueda, A., Guerrero-Hernandez, A., and Olivares-Reyes, J.A. (2016). Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression. Cell. Signal. 28, 53-59.   DOI
43 Hagenfeldt, L., Wahren, J., Pernow, B., and Raf, L. (1972). Uptake of individual free fatty acids by skeletal muscle and liver in man. J. Clin. Invest. 51, 2324-2330.   DOI
44 Gwiazda, K.S., Yang, T.L., Lin, Y., and Johnson, J.D. (2009). Effects of palmitate on ER and cytosolic $Ca^{2+}$ homeostasis in beta-cells. Am. J. Physiol. Endocrinol. Metab. 296, E690-701.   DOI
45 Haack, J.A. and Rosenberg, R.L. (1994). Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys. J. 66, 1051-1060.   DOI