• Title/Summary/Keyword: endophytic fungus

Search Result 69, Processing Time 0.028 seconds

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Genetic Diversity of Epicoccum nigrum and its Effects on Fusarium graminearum

  • Taiying Li;Jihyeon Im;Jungkwan Lee
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.457-466
    • /
    • 2022
  • Epicoccum nigrum is a saprophytic or endophytic fungus that is found worldwide. Because of the antagonist effects of E. nigrum on many plant pathogens, current studies on E. nigrum have focused on the development of biological control agents and the utilization of its various metabolites. In this study, E. nigrum was collected from a wheat field, and its genetic diversity was analyzed. Phylogenetic analyses identified 63 isolates of E. nigrum divided into seven groups, indicating a wide genetic diversity. Isolates antagonized the wheat pathogen Fusarium graminearum, and reduced disease symptoms caused by F. graminearum in wheat coleoptiles. Moreover, pretreatment of wheat coleoptiles with E. nigrum induced the upregulation of pathogen-related (PR) genes, PR1, PR2, PR3, PR5, PR9, and PR10 in wheat coleoptiles responding to F. graminearum invasion. Overall, this study indicates that E. nigrum isolates can be used as biological pathogen inhibitors applied in wheat fields.

Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium)

  • Hamayun, Muhammad;Khan, Sumera Afzal;Iqbal, Ilyas;Ahmad, Bashir;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.202-207
    • /
    • 2010
  • Plant growth promoting fungi (PGPF) are well known for the production of useful secondary metabolites. However, limited information is available on the gibberellin (GA) production capacity of PGPF of endophytic origin. In the current study, 15 fungal endophytes were isolated from the roots of Crown daisy, and then screened on Waito-c rice, in order to identify plant growth promoting fungi. The fungal isolate MH7 significantly increased the shoot length (12.1 cm) of Waito-c in comparison with control treatment (7.9 cm). In a separate experiment, the culture filtrate (CF) of MH7 significantly promoted the growth attributes of Crown daisy. The MH7 CF was analyzed for gibberellins and it contained all physiologically active gibberellins ($GA_1$, 1.37 ng/ml; $GA_3$, 5.88 ng/ml; $GA_4$, 8.62 ng/ml; and $GA_7$, 2.05 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.83 ng/ml), $GA_{12}$ (0.44 ng/ml), $GA_{15}$ (0.74 ng/ml), $GA_{19}$ (1.16 ng/ml), and $GA_{20}$ (0.98 ng/ml). The CF of MH7 produced higher amounts of $GA_3$, $GA_4$, $GA_7$, $GA_9$, and $GA_{12}$ than wild-type Fusarium fujikuroi, which was used as a control for GA production. The fungal isolate MH7 was later identified as a new strain of Penicillium on the basis of its morphological characteristics and phylogenetic analysis of the 188 rDNA sequence.

Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action

  • Yenn, Tong Woei;Ibrahim, Darah;Chang, Lee Kok;Ab Rashid, Syarifah;Ring, Leong Chean;Nee, Tan Wen;Noor, Muhamad Izham bin Muhamad
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.193-199
    • /
    • 2017
  • This study was aimed to evaluate the antimicrobial activity of Penicillium purpurogenum ED76 on several clinically important microorganisms. The endophytic fungus P. purpurogenum ED76 was previously isolated from Swietenia macrophylla leaf. The antimicrobial efficacy of P. purpurogenum ED76 dichloromethane extract was determined via disc diffusion and broth microdilution assay. A kill curve study was conducted and the morphology of extract treated bacterial cells were viewed under scanning electron microscope. The dichloromethane extract showed significant inhibitory activity on 4 test bacteria and 2 test yeasts. The minimal inhibitory concentration of the extract ranged from 125 to $1,000{\mu}g/ml$, which indicates the different susceptibility levels of the test microorganisms to the fungal extract. The kill curve study has revealed a concentration-dependent inhibition for all test microorganisms. With the increase of the extract concentration, the microbial growth was significantly reduced. The scanning electron micrograph of dichloromethane extract-treated Staphylococcus aureus cells showed the total damage of the cells. The cell wall invagination of the bacterial cells also indicates the loss of cellular materials and metabolic activity. The gas chromatography mass spectrometry analysis of the extract also showed that the major compound was stigmasterol, which constitutes 45.30% of the total area. The dichloromethane extract of P. purpurogenum ED76 exhibited significant inhibitory activity on several clinically important bacteria and yeasts. The study proposed a possible mode of action that the extract cause significant damage to the morphology of S. aureus cells.

Gibberellin A4 Producted by Fusarium solani Isolated from the Roots of Suaeda japonica Makino (칠면초의 뿌리로부터 분리된 Fusarium solani에 의해 생산된 지베렐린 A4)

  • Seo, Yeonggyo;You, Young-Hyun;Yoon, Hyeokjun;Kang, Sang-Mo;Kim, Hyun;Kim, Miae;Kim, Changmu;Lee, In-Jung;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1718-1723
    • /
    • 2012
  • Ten endophytic fungi with different colony morphologies were isolated from the roots of Suaeda japonica Makino growing naturally in Suncheon Bay. Plant growth promotion was verified by treating waito-c rice seedlings with culture filtrates from the endophytic fungi. The bioassays showed that the Sj/7/4 fungal strain induced effective growth promotion in the seedlings. The gibberellins (GA) produced by fungal strain Sj/7/4 were analyzed by gas chromatography /mass spectroscopy with selected ion monitoring (GC/MS SIM). The culture filtrate of Sj/7/4 fungal strain was confirmed to contain $GA_4$ through quantitative analysis. The Sj/7/4 fungal strain was identified to determine the internal transcribed spacer (ITS) regions with universal primers ITS-1 and ITS-4 by using polymerase chain reactions (PCR). Molecular analysis of the Sj/7/4 fungal strain showed high similarity to Fusarium solani. The Sj/7/4 fungal strain isolated from the root of S. japonica was therefore designated as F. solani Sj/7/4.

Enzymes Hydrolyzing Structural Components and Ferrous Ion Cause Rusty-root Symptom on Ginseng (Panax ginseng)

  • Lee, Chan-Yong;Kim, Kwang-Yup;Lee, Jo-Eun;Kim, Sung-Han;Ryu, Dong-Kul;Choi, Jae-Eul;An, Gil-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2011
  • Microbial induction of rusty-root was proved in this study. The enzymes hydrolyzing plant structural materials, including pectinase, pectolyase, ligninase, and cellulase, caused the rusty-root in ginseng. Pectinase and pectolyase produced the highest rusty-color formation. Ferrous ion ($Fe^{+++}$) caused the synergistic effect on rusty-root formation in ginseng when it was used with pectinase. The effect of ferric ion ($Fe^{++}$) on rusty-root formation was slow, compared with $Fe^{+++}$, probably due to gradual oxidation to $Fe^{+++}$. Other metal ions including the ferric ion ($Fe^{++}$) did not affect rusty-root formation. The endophytic bacteria Agrobacterium tumefaciens, Lysobacter gummosus, Pseudomonas veronii, Pseudomonas marginalis, Rhodococcus erythropolis, and Rhodococcus globerulus, and the rotten-root forming phytophathogenic fungus Cylindrocarpon destructans, caused rusty-root. The polyphenol formation (rusty color) was not significantly different between microorganisms. The rotten-root-forming C. destructans produced large quantities of external cellulase activity (${\approx}2.3$ U[${\mu}m$/min/mg protein]), which indicated the pathogenecity of the fungus, whereas the bacteria produced 0.1-0.7 U. The fungal external pectinase activities (0.05 U) and rusty-root formation activity were similar to those of the bacteria. In this report, we proved that microbial hydrolyzing enzymes caused rusty-root (Hue value $15^{\circ}$) of ginseng, and ferrous ion worsened the symptom.

Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A.;Jeon, Mi Jin;Jeong, Min-Hye;Kim, Youngmin;Lee, Yerim;Chung, Hyunjung;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.240-244
    • /
    • 2020
  • Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.

Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

  • Garbary, David J.;Deckert, Ron J.;Hubbard, Charlene B.
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.

Biological Characterization of Periconicins, Bioactive Secondary Metabolites, Produced by Periconia sp. OBW-15

  • SHIN, DONG-SUN;OH, MI-NA;YANG, HYEONG-CHEOL;OH, KI-BONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.216-220
    • /
    • 2005
  • Periconicin A and B, two new fusicoccane diterpenes originally isolated from the cultures of endophytic fungus Periconia sp. OBW-15, were tested by several biological assays. Periconicin A was consistently more active than periconicin B. In an antifungal activity assay, periconicin A showed potent inhibitory activity against the agents of human mycoses, including Candida albicans, Trichophyton mentagrophytes, and T. rubrum, with minimum inhibitory concentration (MIC) in the range of 3.12- 6.25 $\mug$ /ml. In a plant growth regulatory activity assay, periconicins inhibited hypocotyl elongation and root growth of Brassica campestris L. and Raphanus sativus L. At concentrations below 1 μg/ml, however, both compounds accelerated root growth by 110- 135%. From these results, it is apparent that a methyl group positioned in a cyclopentane ring may play an important role in plant and fungal growth inhibitory activity.

A New Approach to Produce Resveratrol by Enzymatic Bioconversion

  • Che, Jinxin;Shi, Junling;Gao, Zhenhong;Zhang, Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1348-1357
    • /
    • 2016
  • An enzymatic reaction system was developed and optimized for bioconversion of resveratrol from glucose. Liquid enzyme extracts were prepared from Alternaria sp. MG1, an endophytic fungus from grape, and used directly or after immobilization with sodium alginate. When the enzyme solution was used, efficient production of resveratrol was found within 120 min in a manner that was pH-, reaction time-, enzyme amount-, substrate type-, and substrate concentration-dependent. After the optimization experiments using the response surface methodology, the highest value of resveratrol production (224.40 μg/l) was found under the conditions of pH 6.84, 0.35 g/l glucose, 0.02 mg/l coenzyme A, and 0.02 mg/l ATP. Immobilized enzyme extracts could keep high production of resveratrol during recycling use for two to five times. The developed system indicated a potential approach to resveratrol biosynthesis independent of plants and fungal cell growth, and provided a possible way to produce resveratrol within 2 h, the shortest period needed for biosynthesis of resveratrol so far.