• Title/Summary/Keyword: end friction

Search Result 277, Processing Time 0.023 seconds

Axial Load Transfer Behavior for Driven Open-ended End bearing Steel Pipe Pile (선단지지된 항타개단강관말뚝의 축하중전이거동)

  • 임태경;정성민;정창규;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.589-596
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement were accomplished in the field. Yield pile capacity (or ultimate pile capacity) determined by load-settlement-time relationship was determined and axial load transfer behavior was analyzed. In the test for the four test piles were behaved as end bearing pile but ratios of skin friction to total pile capacity were 27%∼33%.

  • PDF

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations

  • Goo, Geun-Hoi;Sung, Gi-Hong;Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1595-1603
    • /
    • 2002
  • In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

Vertical Load Transfer Mechanism of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 수직 하중전이 특성)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Jang, Hwa-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.29-39
    • /
    • 2015
  • The vertical load imposed on the bucket foundation is transferred from the soil inside the bucket to the bottom of the foundation, and also to the outer surface of the skirt. For the design of a bucket foundation installed in sand, the vertical load transfer characteristics have to be clearly identified. However, the response of bucket foundations in sand subjected to a vertical load has not been investigated. In this study, we performed two-dimensional axisymmetric finite element analyses and investigated the vertical load transfer mechanism of bucket foundation installed in sand. The end bearing capacity of bucket foundation is shown to be larger than that of the shallow foundation, whereas the frictional resistance is smaller than that for a pile. The end bearing capacity of the bucket foundation is larger than the shallow foundation because the shear stress acting on the skirt pushes down and enlarges the failure surface. The skin friction is smaller than the pile because the settlement induces horizontal movement of the soil below the tip of the foundation and reduces the normal stress acting at the bottom part of the skirt. The calculated bearing capacity of the bucket foundation is larger than the sum of end bearing capacity of shallow foundation and skin friction of pile. This is because the increment of the end bearing capacity is larger than the reduction in the skin friction.

Earthquake response of isolated cable-stayed bridges under spatially varying ground motions

  • Ates, Sevket;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.639-662
    • /
    • 2009
  • A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one end to the other end. The vertical movement of the stiffening girder is restrained and freedom of rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the base isolation procedure, the double concave friction pendulum bearings are placed at each of the four support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the double concave friction pendulum bearings which are sliding devices that utilize two spherical concave surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground motion significantly underestimates the deck and the tower responses.

Effects of Double Surfaces Finishing on Acoustical Properties of Soundboard for Traditional Musical Instruments (전통악기 음향판의 양면도장이 음향성에 미치는 영향)

  • Jung, Hee-Suk;Yoo, Tae-Kyung;Kwon, Joo-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.26-33
    • /
    • 1998
  • Acoustical properties of chestnut and paulownia woods have been determined in four film thicknesses of oriental lacquering and cashew varnishing on double surfaces of soundboard to elucidate effects of finishing. Accelerometer was attached to the specimen at one third position from one end, and specimen was hit by the impact hammer at one third position from opposite end. Data were processed by vibration analyzer. The ratio of axial-to-transverse sound velocity of untreated specimens of chestnut and paulownia were 3.25 and 5.34, respectively. Natural frequency, specific Young's modulus, acoustical coefficient, sound velocity, damping of sound radiation(DSR) and acoustical converting efficiency(ACE) decreased by oriental lacquering and cashew varnishing for both species. Damping of internal friction of chestnut decreased by oriental lacquering and cashew varnishing, but that of paulownia increased. Natural frequency. specific Young's modulus, acoustical coefficient, sound velocity, and DSR decreased with increased film thickness of both finishing materials. However, damping of internal friction and ACE showed irregular tendency with increased film thickness. Acoustical properties of cashew varnished chestnut specimen were better than those of oriental lacquered specimen. Acoustical properties of oriental lacquered paulownia specimen were better than those of cashew varnished specimen.

  • PDF

Study on the Rotating Motion of a Piston Pin of Full Floating Type (비고정식 피스톤 핀의 회전운동에 관한 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.95-102
    • /
    • 2007
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. Moreover, the lead removal from the bush material has strongly reduced the capability of the anti friction material to accept asperity contacts. In this paper, before trying to find the pressure distributions on the oil film of piston pin bearings by the unsteady two dimensional thermohydrodynamic lubrication analysis in order to do the optimum design of the bearings of piston pin, it will be investigated the tendancy of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress.

A Study of Micro-piles Method combined with the Resisting Fixture interacting the power of frictional resistance in a contrary direction (양방향 저항체를 결합한 마이크로파일공법 연구)

  • Baik, Dong-Ho;Lee, Sang-Moo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.74-75
    • /
    • 2014
  • In remodeling business or construction of both new strucures and existing structures, Case that pile foundation was set is often. Micro pile, holding compressive force and tensile force by spherical friction, is supported by skin friction rather than end bearing capacity. but, This is weak in tension. Active area of micro pile's skin friction is narrow and micro pile don't do unification behavior hence. So bearing capacity was not fully mobilized in existing researching. In this study, in order to compensate for this method, micro pile to install Resisting Fixture is proposed.

  • PDF

An analysis of fluid flow In U-bend area of laminated plate heat exchanger (적층형 판 열교환기의 U턴부 유동해석)

  • 이관수;박철균;정지완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.348-357
    • /
    • 1998
  • The flow characteristics inside U-bend tube of the laminated plate heat exchanger were numerically investigated. The behavior of fluid flow, and the variations of the faulty area and friction factor are examined according to the distance between the span and the wall and the diameter of the round attacked to the end of span. The results show that the diameter(d) of the round attached to the span is mainly associated with the smooth circulation of fluid flow rather than the size of faulty area and the friction factor. As the distance($\ell$) between the span and the wall decreases, the faulty area decreases, however the friction factor dramatically increases. It is also found that one can obtain a good result in the view of the flow characteristics and pressure drop at d=7.5mm and $\ell$=30.5mm.

  • PDF

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.