Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.11.1595

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations  

Goo, Geun-Hoi
Sung, Gi-Hong
Lee, Song-Hi
Chang, Tai-Hyun
Publication Information
Abstract
In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.
Keywords
Molecular dynamics simulation; Diffusion coefficient; n-Alkanes;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Paul, W.; Smith, G. D.; Yoon, D. Y. Macromolecules 1997, 30, 7772.   DOI   ScienceOn
2 Mondello, M.; Grest, G. S.; Webb, E. B.; Peczak, P. J. Chem. Phys. 1998, 109, 798.   DOI   ScienceOn
3 Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7161.
4 Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995, 102, 3376.   DOI   ScienceOn
5 Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156.   DOI   ScienceOn
6 Lodge, T. P.; Rotstein, N. A.; Prager, S. Adv. Chem. Phys. 1990, 9, 1.
7 Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem. Phys. 1998, 108, 4299.   DOI   ScienceOn
8 Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1994, 100, 1684   DOI   ScienceOn
9 Siepmann, J. I.; Karaborni, S.; Smit, B. Nature (London) 1993, 365, 330.   DOI   ScienceOn
10 Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.
11 Berne, B.; Pecora, R. Dynamic Light Scattering; Wiley: New York, 1976.
12 Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 105, 1214.
13 Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Englewood Cliffs, NJ; Prentice-Hall, 1971.
14 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon: Oxford, 1986.
15 Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016.   DOI
16 Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261.   DOI
17 Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255.   DOI
18 Fleisher, G. Polym. Bull. (Berlin) 1983, 9, 152.
19 Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C. Macromolecules 1987, 20, 1133.   DOI
20 Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995, 102, 2126.   DOI   ScienceOn
21 Goldstein, Classical Mechanics; Addison-Wesley: Harvard University, 1974;, p 155.
22 Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 1947, 13, 305.   DOI   ScienceOn
23 Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 94, 5650   DOI
24 Debye, P. Polar Molecules; Dover: New York, 1929.
25 Cohen, M. H.; Tumbull, D. J. Chem. Phys. 1959, 31, 1164.   DOI
26 Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1996, 104, 2078.   DOI
27 Baschnagel, J.; Qin, K.; Paul, W.; Binder, K. Macromolecules 1992, 25, 3117.   DOI
28 Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 95, 509.   DOI
29 Park, H. S.; Chang, T.; Lee, S. H. J. Chem. Phys. 2000, 113, 5502.   DOI   ScienceOn
30 Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156.   DOI   ScienceOn
31 McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976.
32 Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N. Macromolecules 1998, 31, 7934.   DOI   ScienceOn
33 Andersen, H. J. Comput. Phys. 1984, 52, 24.   DOI   ScienceOn
34 Ciccotti, G.: Ferrario, M.: Hynes, J. T.: Kapral, R. J. Chem. Phys. 1990, 93, 7137.   DOI
35 Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92.   DOI   ScienceOn
36 Kubo, R. Rep. Prog. Phys. 1966, 29, 255.   DOI   ScienceOn
37 De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, New York, 1979.
38 Boothroyd, A.; Rennie, A. R.; Boothroyd, C. B. Europhys. Lett. 1991, 15, 715.   DOI   ScienceOn
39 Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638.   DOI