• Title/Summary/Keyword: end friction

Search Result 277, Processing Time 0.029 seconds

Research on Development of Dynamo based Vehicle Brake force Inspection Equipment (다이나모 기반의 차량 제동력 검사장비 개발 연구)

  • Lim, Jinwoo;Lee, Kwang-Hee;Kim, John;Lee, Chul-Hee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.20-25
    • /
    • 2017
  • Dynamo based vehicle inspection device is end of line device for automobile industry. The device is utilized as implementing vehicle functionality inspection such as brake force, cruise control, kick-down acceleration, CAN inspection. As dynamo based inspection device is broadly adopted in automobile industry, the dynamic study is required to verify the vehicle test equipment reliability. This research recommends appropriate dynamic brake force inspection procedure and theoretical background for developed equipment. Dynamic characteristic of brake force implementation to roller is simplified. With simplified characteristics, the indirect brake force measurement strategy is developed and adopted. Comparison of each brake force result, the appropriate brake force inspection criterion is given.

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels (열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰)

  • Lee, Sang-Jun;Yoo, Ui-Kyung;Lee, Young-Seog;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

A study on the process of tube end spinning by the upper bound method and the finite element method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김전형;홍성인;이정환;이영선
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

Design Method of Rock Socketed Drilled Shafts in Domestic and Foreign (국내외 암반에 근입된 현장타설말뚝의 지지력 산정 기준)

  • Nam, Moon-S.;Jeon, Kyung-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.537-544
    • /
    • 2009
  • Several domestic and foreign design methods for rock socketed drilled shafts were introduced in this study. In order to verify these design methods, the results of field pile load tests were compared with predicted capacities using them. Based on this study, AASHTO(1996) and FHWA(1999) design methods tend to underestimate, and CFEM(2006) and NAVFAC(1982) tend to overestimate. The difference between the predicted and measured values was caused by reflecting different rock socket geometry and also different rock properties in each design method.

  • PDF

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

Effect of High Frequency Oscillation on Compression Tests of Aluminum Cylindrical Specimens (알루미늄 실린더 압축실험에서의 고주파 진동의 영향)

  • Kim, S.W.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.373-378
    • /
    • 2016
  • Recent researches have reported that the superposition of ultrasonic vibrations in metal forming provides beneficial effects such as the reduction of forming load, flow stress and interfacial friction which improves the surface quality of end products. This paper presents experimental investigations on the effects of ultrasonic vibrations in upsetting tests of aluminum. The ultrasonic exciting system consists of piezoelectric transducer and resonator was designed and constructed to superimpose high frequency oscillation on the forming tools. Ultrasonic vibration-assisted upsetting tests were performed for three vibration modes five amplitudes, and the results were compared with those of conventional upsetting tests. The results showed that the superimposition of ultrasonic vibration reduces the upsetting load, and the load reduction is only dependent on the amplitude of the applied vibration regardless of deformation histories and vibration modes.

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

Quantitative Assessment of Initial Wear Characteristics of CoCr-Based Alloys (CoCr 기반 합금의 초기 마모 특성에 대한 정량적 평가)

  • Cha, Su-Bin;Kim, Hoe-Jin;Huynh, Ngoc-Phat;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.199-206
    • /
    • 2020
  • CoCr-based alloys have been developed as wear-resistant materials owing to their excellent mechanical properties and strong wear resistance. The purpose of this study is to experimentally assess the frictional and wear characteristics of CoCr-based alloys slid against two different counter materials subjected to various normal forces to determine the expansion applicability of CoCr-based alloys. CoCrMo and CoCr alloys were selected as the target materials and NiCr and NiCrB alloys as counter materials. Experimental tests were performed using a pin-on-reciprocating plate tribo-tester under dry lubrication. Before performing the tests, the surface of the specimens was observed through confocal microscopy and the hardness was measured using a micro-Vickers hardness tester. The wear volume of the plate was calculated at the end of the tests using confocal microscope data, and the wear rate was quantitatively obtained based on Archard's wear law. From the results, the wear rates of the CoCrMo specimens that slid against NiCr and NiCrB are 7.69 × 10-6 ㎣/Nm and 5.26 × 10-6 ㎣/Nm, respectively. The wear rates of the CoCr specimens that slid against NiCr and NiCrB were higher than those of the CoCrMo specimens by factors of approximately 4 and 8, respectively. The CoCrMo specimens further exhibited lower friction characteristics than the CoCr specimens. The findings of this study will be useful for expanded applications of CoCr-based alloys as wear-resistant materials for various mechanical parts.