DOI QR코드

DOI QR Code

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia (School of Transportation, Southeast University, Jiulong Lake Campus) ;
  • Guangyin Du (School of Transportation, Southeast University, Jiulong Lake Campus) ;
  • Jun Cai (School of Transportation, Southeast University, Jiulong Lake Campus) ;
  • Changshen Sun (School of Transportation, Southeast University, Jiulong Lake Campus)
  • Received : 2022.02.01
  • Accepted : 2024.07.02
  • Published : 2024.07.10

Abstract

The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

Keywords

Acknowledgement

The authors gratefully acknowledge the National Nature Science Foundation of China (Grant No. 41977241) and Changjiang Survey Planning Design and Research Co., Ltd Research Project (Grant No. CX2022Z34).

References

  1. ACI (2006), "Pervious concrete", ACI 522R-06, American Concrete Institute, Farmington Hills, USA.
  2. ACI (2010), "Report on pervious concrete", ACI 522R, American Concrete Institute, Farmington Hills, USA.
  3. API (1987), "Recommended practice for planning, designing and constructing fixed offshore platforms: API recommended practice, 2A (RP 2A)", 17th Ed., Washington, DC: API.
  4. Bahadori, H. and Farzalizadeh, R. (2018), "Dynamic properties of saturated sands mixed with tyre powders and tyre shreds", Int. J Civil Eng., 16(4), 395-408. https://doi.org/10.1007/s40999-016-0136-9.
  5. Bahadori, H. and Manafi, S. (2015), "Effect of tyre chips on dynamic properties of saturated sands", Int. J. Phys. Model. Geotech., 15(3), 116-128. https://doi.org/10.1680/jphmg.13.00014.
  6. Bahadori, H., Farzalizadeh R., Barghi, A. and Hasheminezhad, A. (2018), "A comparative study between gravel and rubber drainage columns for mitigation of liquefaction hazards", J. Rock Mech. Geotech. Eng., 10(2018), 924-934. https://doi.org/10.1016/j.jrmge.2018.03.008.
  7. CJJ/T 135-2009 (2009), "The technical specifications for pervious concrete pavement", Ministry of Housing and Urban-Rural Development of People's Republic of China.
  8. Cui, X.Z., Jin, Q., Cui, S., Zhang, J. and Zhang, X. (2021), "Approximate experimental simulation of clogging of pervious concrete pile induced by soil liquefaction during earthquake", J. Test Eval., 49(1), 82-95. https://doi.org/10.1520/JTE20200048.
  9. DB37/T 5124-2018 (2018), "Technical code for composite foundation of pervious pile", Housing and Urban-Rural Development Department of Shandong Province & Shandong administration of Market Regulation.
  10. GB/T 50783-2012 (2012), "Technical code for composite foundation", Ministry of Housing and Urban-Rural Development of People's Republic of China, 2012.
  11. Ghafoori, N. and Dutta, S. (1995), "Laboratory investigation of compacted no-fines concrete for paving materials", J. Mater. Civil Eng., 7(3), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(183).
  12. Gong, J. and Qin, A. (2022), "Analytical solution for axisymmetric consolidation of unsaturated composite foundation incorporating permeable columns and impermeable columns", Int. J. Numer. Anal. Method. Geomech.. 47, 609-626. https://doi.org10.1002/nag.3484.
  13. Han, B. and Lu, M. (2023), "Theoretical study of consolidation of composite ground with permeable concrete piles considering pile penetration deformation", Rock Soil Mech., 8(44), 2360-2368. https://doi.org/10.16285/j.rsm.2022.1364.
  14. Haselbach, L.M. and Freeman, R.M. (2007), "Effectively estimating in situ porosity of pervious concrete from cores", J. ASTM Int., 4(7), 1-11. https://doi.org/10.1520/JAI100293.
  15. Hasheminezhad, A. and Bahadori, H. (2019), "Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns", Comput. Geotech., 110, 251-273. https://doi.org/10.1016/j.compgeo.2019.02.019.
  16. Hasheminezhad, A. and Bahadori, H. (2020), "On the deep soil mixing method in the mitigation of liquefaction-induced bearing capacity degradation of shallow foundations", Geomech. Geoeng., 17(1), 334-346. https://doi.org/10.1080/17486025.2020.1755460.
  17. Hsai-Yang, F. (1991), "Foundation engineering handbook", Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5271-7.
  18. Huang, B., Wu, H. Shu, X. and Burdette, E.G. (2010), "Laboratory evaluation of permeability and strength of polymer-modified pervious concrete", Constr. Build. Mater., 24(5), 818-823. https://doi.org/10.1016/j.conbuildmat.2009.10.025.
  19. Huang, Y., Wang, J. and Mei, G. (2016), "Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile", Rock Soil Mech., 10(37), 2893-2908. https://doi.org/10.16285/j.rsm.2016.10.021.
  20. Kayhanian M., Anderson D., Harvey J.T., Jones, D. and Muhunthan, B. (2012), "Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots", J. Environ. Management, 95(1), 114-123. https://doi.org/10.1016/j.jenvman.2011.09.021.
  21. Le, Y., Wang, N., Hu, W., Geng, D., Cai, Y. and Peng, Y. (2022), "Vertical dynamic impedance of a sand-filled nodular pile in saturated soil", Ocean Eng., 259, 112075. https://doi.org/10.1016/j.oceaneng.2022.112075.
  22. Lin, H., Suleiman, M.T., Jabbour, H., Brown, D., and Kavazanjian, E., (2016), "Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting", J. Geotech. Geoenviron. Eng., 142(10), 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
  23. Liu, P. and Yang, G. (2012), "Pile-soil self-balanced composite foundation design considering pile-end piercing settlement", Rock Soil Mech., 33(2), 539-546. https://doi.org/10.3969/j.issn.1000-7598.2012.02.034.
  24. Malaiskiene, J. Kizinievic, O. and Sarkauskas, A. (2020), "The impact of coarse aggregate content on infiltration rate, structure and other physical & mechanical properties of pervious concrete", Eur. J. Environ. Civil Eng., 24(5), 569-582. https://doi.org/10.1080/19648189.2017.1410231.
  25. Montes, F., Valavala, S. and Haselbach, L.M. (2005), "A new test method for porosity measurements of portland cement pervious concrete", J. ASTM Int., 2(1), 1-13.
  26. Neithalath, N., Sumanasooriya, M.S. and Deo, O. (2010), "Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction", Mater. Characterization, 61(8), 802-813. https://doi.org/10.1016/j.matchar.2010.05.004.
  27. Neville, A.M. (1996), "Properties of concrete", Essex, England: Addison Wesley Longman Limited.
  28. Ni, L., Suleiman, M.T. and Raich, A. (2016), "Behavior and soil-structure interaction of pervious concrete ground-improvement piles under lateral loading", J. Geotech. Geoenviron. Eng., 142(2), 4015071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001393.
  29. Pan, H., Du, G., Xia, H., Wang, H. and Qin, D. (2021), "Quality assessment of dry soil mixing columns in soft soil areas of Eastern China", Appl. Sci., 11(21), 9957. https://doi.org/10.3390/app11219957.
  30. Peng, Y., Ding, X., Yin, Z. and Wang, P. (2022), "Micromechanical analysis of the particle corner breakage effect on pile penetration resistance and formation of breakage zones in coral sand", Ocean Eng., 259, 111859. https://doi.org/10.1016/j.oceaneng.2022.111859.
  31. Qi, C., Li, R., Gan, F., Zhang, W. and Han, H. (2020), "Measurement and simulation on consolidation behaviour of soft foundation improved with prefabricated vertical drains", Int. J. Geosynth. Ground Eng., 6, 23. https://doi.org/10.1007/s40891-020-00208-z..
  32. Qin, Y.H., Liang, J., Yang, H. and Deng, Z. (2016), "Gas permeability of pervious concrete and its implications on the application of pervious pavements", Measurement, 78, 104-110. https://doi.org/10.1016/j.measurement.2015.09.055.
  33. Rashma, R.S.V., Jayalekshmi. B.R. and Shivashankar, R. (2021), "Shear strength behaviour of pervious concrete column improved soft clay bed: a numerical study", Transport. Infrastruct. Geotechnol., 9, 543-562. (Online). https://doi.org/10.1007/s40515-021-00179-2.
  34. Schaefer, V.R. and Wang, K. (2006), "Mix design development for pervious concrete in cold weather climates", Iowa State University.
  35. Suleiman, M.T., Ni, L. and Raich, A. (2014), "Development of pervious concrete pile ground-improvement alternative and behavior under vertical loading", J. Geotech. Geoenviron. Eng., 140(7), 4014035. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001135.
  36. Tamai, M., Kawai, A. and Kitada, H. (1992), "Properties of no-fines concrete in sea water and possibility of purifying water quality", JCA Proceedings of Cement and Concrete,. 46, 880-885.
  37. Teja, M., Mohammad, M.K. and Kalyan, K.G. (2020), "Axial and lateral loading behaviour of pervious concrete pile", Indian Geotech. J., 50(3), 505-513. https://doi.org/10.1007/s40098-019-00377-3.
  38. Tennis, P.D., Leming, M.L. and Akers, D.J. (2004), "Pervious concrete pavements (No. PCA Serial No. 2828)", Portland Cement Association, Skokie, Illinois.
  39. Wang, A., Zhang, Y., Xia, F., Luo, R. and Wang, N. (2022), "Study of the lateral bearing capacity and optimization reinforcement scheme of an open caisson with consideration of soil disturbance", Appl. Sci., 12(11), 5498. https://doi.org/10.3390/app12115498.
  40. Wen, L., Kong, G., Li, Q. and Zhang, Z. (2020), "Field tests on axial behavior of grouted steel pipe micropiles in marine soft clay", Int. J. Geomech., 20(6), 06020006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001656.
  41. Wu, Y.D., Liu, J. and Chen, R. (2015), "An analytical analysis of a single axially-loaded pile using a nonlinear softening model", Geomech. Eng., 8(6), 769-781. https://doi.org/10.12989/gae.2015.8.6.769
  42. Yahia, A. and Kabagire, K.D. (2014), "New approach to proportion pervious concrete", Constr. Build. Mater., 62, 38-46. https://doi.org/10.1016/j.conbuildmat.2014.03.025.
  43. Yu, C., Zhang, A., Wang, Y. and Ren, W. (2020), "Analytical solution for consolidation of combined composite foundation reinforced with penetrated impermeable columns and partially penetrated permeable stone columns", Comput. Geotech., 124(2020), 103606. https://doi.org/10.1016/j.compgeo.2020.103606.
  44. Zhang, J., Cui, X.Z., Lan, R.Y., Zhao, Y.L., Lv, H.B., Xue, Q. and Chang, C.L. (2017), "Dynamic performance characteristics of pervious concrete pile composite foundations under earthquake loads", J. Perform. Constr. Fac., 31(5), 04017064. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001056.