• Title/Summary/Keyword: end bearing capacity

Search Result 183, Processing Time 0.024 seconds

Analysis of Bearing Capacity of Rock Socketed Pre-Bored Super Strength Piles Based on Dynamic Load Test Results (동재하시험을 통한 선단이 암반에 근입된 초고강도 매입 PHC 말뚝의 지지력 특성 분석)

  • Kim, Rakhyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics of bearing capacity of pre-bored super strength PHC (SSPHC) piles socketed in rocks based on dynamic load test results. Because the SSPHC piles have high compressive concrete strengths compared with those of regular high strength PHC piles, the allowable structural strengths of the SSPHC piles were increased. For optimal design of the super strength PHC piles, the geotechnical bearing capacity of the SSPHC piles should also increased to balance the increased allowable structural strength of the SSPHC piles. Current practices of pile installation apply the same amount of driving energy on both SSPHC and high strength PHC piles. As results of analyzing factors that influence bearing strength of SSPHC piles using dynamic load test, there was no relationship between SPT-N value at pile toe and end bearing capacity. But driving energy effects on end bearing capacity. In case of skin friction, driving energy had no effects. And reasonable method verifying design bearing strength is necessary because end bearing capacity is not considered sufficiently in restrike test results.

A Characteristics of Bearing Capacity by PG Pile on Waste Landfill (폐기물 매립지반에서 PG Pile의 지반지지력 특성)

  • 천병식;최춘식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.213-218
    • /
    • 2000
  • Waste landfill is so loose that it may cause the insufficient bearing capacity and the differential settlement. And so, characteristics and conditions of the ground should be considered in applications of ground improvement in waste landfill. In this paper, analysis of field tests as the static loading test and the bearing capacity test were performed. In result, PG(Pack Grouting) pile method is proved effective and economic, because it could bring about the increase of end bearing capacity, the prevention of differential settlement and increase of density by expansion of pile.

  • PDF

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

A Scale-Effect of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 치수 효과)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.884-890
    • /
    • 2009
  • The bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of the bi-direction can be known by using the loading of the end plate and two step procedures. The first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell, operated with end plate of 3 type on sand layer according to the relative density, loose, medium and dense conditions.

  • PDF

End Bearing Capacity of a Single Pile in Cohesionless Soils using Cavity Expansion Concept (공동확장개념에 의한 사질토에서의 말뚝의 선단지지각 해석)

  • 이명환
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-46
    • /
    • 1989
  • To analyse the end bearing capacity of a single pile in cohesionless soils, the mode of deformation due to a pile penetration has been intestigated through model pile penetration tests using acetone hardening and resin impregnation technique. A new mode of deformation has been assumed from the experimental results and a new solution compeying with the theory of spherical cal.its expansion has been proposed. The end bearing capacity according to the proposed solution is expressed as the product of the limit spherical cavity expansion pressure multiplied by a col.relation factor. The results has been compared with other solutions based on the theory of cavity expansion. From the comparison, the proposed solution is expected to provide a way to solve the problem of pile bearing capacity prediction based on the theory of cavity expansion which often has been criticized as giving higher value of pile bearing capacity than the actual value.

  • PDF

A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction (부주면마찰력을 고려한 단말뚝의 허용지지력 공식 분석)

  • Lee, Sung-June;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.27-37
    • /
    • 2010
  • Downdrag force develops when a pile is driven through a soil layer which will settle more than a pile. There is no obvious criterion for application of the current pile design method considering the negative skin friction. Therefore, in this study, numerical analyses were performed to investigate the behavior of a single pile subjected to negative skin friction and their results were used to determine the applicability of the current design method. Including three different sites in Song-do area and two different cases with friction pile and end bearing pile conditions, total six cases were considered. The load-settlement relationships and the neutral points were estimated for different end bearing conditions and the allowable bearing capacity of piles with negative skin friction was investigated through parametric studies. Based on the results showed that the negative skin friction made a major influence on the settlement of a pile and its stress. However the allowable bearing capacity may not be influenced by the negative skin friction. Compared with the allowable bearing capacity obtained from the ultimate bearing capacity with the safety factor of 3, the current design method with the safety factor of 3 underestimated the allowable bearing capacities regardless of the end bearing conditions. On the other hand, the current design method with the safety factor of 2 yielded reasonable results depending on the end bearing conditions.

Changes in Ultimate Bearing Capacity according to the Position of the End of the Drilled Shaft (현장타설말뚝 선단부의 위치에 따른 극한지지력 변화)

  • Choi, Dong-Lo;Park, Kyeong-Ho;Kim, Chae-Min;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.49-59
    • /
    • 2022
  • This study was conducted to find out the rational and appropriate design of drilled shaft. In other words, in order to find out the variation of ultimate bearing capacity according to the change in the support layer of drilled shaft, back analysis was performed using the bi-directional pile load test performed on drilled shaft. Based on the back-analyzed data, numerical analysis of the pile head load was performed, and the ultimate bearing capacity in the target ground was evaluated using the Davisson method. As a result of numerical analysis of one case where the end of the pile was seated on the top of the weathered rock layer, and three cases where the end of the pile was embedded at different locations in the weathered soil, it was found that sufficient ultimate bearing capacity was secured in all cases. In other words, the case where the end of the pile is seated on the top of the weathered rock layer, not embedded the weathered rock, and the drilled shaft embedded into the weathered soil also have sufficient bearing capacity, so it can be used as a support layer for drilled shaft.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

Behavior of bearing Capacity of Piles with an Extended Head by Model Tests (모형실험에 의한 선단확장파일의 지지력 특성)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Lee, Bong-Won;Kim, Young-Hun;Byun, Jo-Seph;Heo, Kab-Soo;Song, Ki-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.536-545
    • /
    • 2006
  • In this study the behavior of piles with an extended head is invested experimentally using reduced-scale model tests. Special attention is given to verifying the increase of end bearing capacity of piles with spreading head. Model piles and extended head plates made of steel pipe were used in this study. Bearing capacity of piles is regarded as only end bearing capacity. The study analyzed the tendency of single and group pile of bearing capacity compared with the existing PHC pile, and examined optimum effect of extended head.

  • PDF