• Title/Summary/Keyword: encrypted image

Search Result 174, Processing Time 0.025 seconds

A Secure Method for Color Image Steganography using Gray-Level Modification and Multi-level Encryption

  • Muhammad, Khan;Ahmad, Jamil;Farman, Haleem;Jan, Zahoor;Sajjad, Muhammad;Baik, Sung Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1938-1962
    • /
    • 2015
  • Security of information during transmission is a major issue in this modern era. All of the communicating bodies want confidentiality, integrity, and authenticity of their secret information. Researchers have presented various schemes to cope with these Internet security issues. In this context, both steganography and cryptography can be used effectively. However, major limitation in the existing steganographic methods is the low-quality output stego images, which consequently results in the lack of security. To cope with these issues, we present an efficient method for RGB images based on gray level modification (GLM) and multi-level encryption (MLE). The secret key and secret data is encrypted using MLE algorithm before mapping it to the grey-levels of the cover image. Then, a transposition function is applied on cover image prior to data hiding. The usage of transpose, secret key, MLE, and GLM adds four different levels of security to the proposed algorithm, making it very difficult for a malicious user to extract the original secret information. The proposed method is evaluated both quantitatively and qualitatively. The experimental results, compared with several state-of-the-art algorithms, show that the proposed algorithm not only enhances the quality of stego images but also provides multiple levels of security, which can significantly misguide image steganalysis and makes the attack on this algorithm more challenging.

Technique of Range Query in Encrypted Database (암호화 데이터베이스에서 영역 질의를 위한 기술)

  • Kim, Cheon-Shik;Kim, Hyoung-Joong;Hong, You-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.22-30
    • /
    • 2008
  • Recently, protection of personal information is getting more important. Many countries have legislated about the protection of personal information. Now, the protection of relevant personal information is required not for a simple image of enterprises but law obligation. Most databases in enterprises used to store customers' names, addresses and credit card numbers with no exceptions. The personal information about a person is sensitive, and this asset is strategic. Therefore, most enterprises make an effort to preserve personal information safely. If someone, however, hacks password information of DBMS manager, no one can trust this system. Therefore, encryption is required based in order to protect data in the database. Because of database encryption, however, it is the problem of database performance in terms of computation time and the limited SQL query. Thus, we proposed an efficient query method to solve the problem of encrypted data in this paper.

Scrambling Technology using Scalable Encryption in SVC (SVC에서 스케일러블 암호화를 이용한 스크램블링 기술)

  • Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • With widespread use of the Internet and improvements in streaming media and compression technology, digital music, video, and image can be distributed instantaneously across the Internet to end-users. However, most conventional Digital Right Management are often not secure and not fast enough to process the vast amount of data generated by the multimedia applications to meet the real-time constraints. The SVC offers temporal, spatial, and SNR scalability to varying network bandwidth and different application needs. Meanwhile, for many multimedia services, security is an important component to restrict unauthorized content access and distribution. This suggests the need for new cryptography system implementations that can operate at SVC. In this paper, we propose a new scrambling encryption for reserving the characteristic of scalability in MPEG4-SVC. In the base layer, the proposed algorithm is applied and performed the selective scambling. And it encrypts various MVS and intra-mode scrambling in the enhancement layer. In the decryption, it decrypts each encrypted layers by using another encrypted keys. Throughout the experimental results, the proposed algorithms have low complexity in encryption and the robustness of communication errors.

A Direction-Adaptive Watermarking Technique Based on 2DCT in the Buyer-Seller Watermarking Protocol (구매자-판매자 워터마킹 프로토콜상에서 DCT 기반의 방향성 적응 워터마킹)

  • Seong, Teak-Young;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.778-786
    • /
    • 2014
  • Buyer-seller watermarking protocol is one of the copyright protection techniques which combine a cryptographic protocol used in electronic commerce with a digital wetermarking scheme aiming at proving the ownership of multimedia contents and preventing the illegal reproduction and redistribution of digital contents. In this paper, it is proposed a new watermarking scheme in an encrypted domain in an image that is based on the block-DCT framework. In order to implement watermarking scheme in a public-key cryptosystem, it is divided that frequency coefficients exist as real number into integer and decimal layer. And the decimal layer is modified integer type through integral-processing. Also, for robustness and invisibility required in watermarking scheme, it is designed a direction-adaptive watermarking scheme based on locally edge-properties of each block in an image through analyzing distribution property of the frequency coefficients in a block using JND threshold.

Hybrid Color and Grayscale Images Encryption Scheme Based on Quaternion Hartley Transform and Logistic Map in Gyrator Domain

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • A hybrid color and grayscale images encryption scheme based on the quaternion Hartley transform (QHT), the two-dimensional (2D) logistic map, the double random phase encoding (DRPE) in gyrator transform (GT) domain and the three-step phase-shifting interferometry (PSI) is presented. First, we propose a new color image processing tool termed as the quaternion Hartley transform, and we develop an efficient method to calculate the QHT of a quaternion matrix. In the presented encryption scheme, the original color and grayscale images are represented by quaternion algebra and processed holistically in a vector manner using QHT. To enhance the security level, a 2D logistic map-based scrambling technique is designed to permute the complex amplitude, which is formed by the components of the QHT-transformed original images. Subsequently, the scrambled data is encoded by the GT-based DRPE system. For the convenience of storage and transmission, the resulting encrypted signal is recorded as the real-valued interferograms using three-step PSI. The parameters of the scrambling method, the GT orders and the two random phase masks form the keys for decryption of the secret images. Simulation results demonstrate that the proposed scheme has high security level and certain robustness against data loss, noise disturbance and some attacks such as chosen plaintext attack.

3D Object Encryption Employed Chaotic Sequence in Integral Imaging (집적영상에서의 혼돈 수열을 사용한 3D 물체의 암호화)

  • Li, Xiao-Wei;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.411-418
    • /
    • 2018
  • This paper presents a novel three-dimensional (3D) object encryption scheme by combining the use of the virtual optics and the chaotic sequence. A virtual 3D object is digitally produced using a two-dimensional (2D) elemental image array (EIA) created with a virtual pinhole array. Then, through a logistic mapping of chaotic sequence, a final encrypted video can be produced. Such method converts the value of a pixel which is the basic information of an image. Therefore, it gives an improved encryption result compared to other existing methods. Through computational experiments, we were able to verify our method's feasibility and effectiveness.

IoT based Authentication System Implementation on Raspberry Pi (라즈베리파이에서 사물인터넷 기반의 인증 시스템 구현)

  • Kim, Jeong Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.31-38
    • /
    • 2017
  • With the Development of Information Technology, Security is becoming very Important. Existing Security Systems are Mostly Expensive and Not Easy to Implement, and are Also very Complex when using Biometric Information. In this paper, We try to solve this Problem by Implementing a Low cost Internet based Security Terminal Using Fingerprint and Face Image. To Implement a Low-cost Security System, a Fingerprint Scanner and a Camera are installed in Raspberry pi, and the Scanned Image is encrypted with the AES-256 Algorithm and Transmitted to Cloud. Through This Study, We confirmed the Possibility of the Proposed System in view of Authentication, Cost Reduction, Security and Scalability.

A Partial Encryption Methods for Digital Holograms (디지털 홀로그램을 위한 부분 암호화 기법)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.51-58
    • /
    • 2007
  • The purpose of this paper is to find an efficient encryption scheme for digital holograms (fringe patterns) with low encryption cost. Therefore, we introduced several encryption attempts in both hologram-domain and frequency-domain (both DCT-domain and DWT-domain) on the bases of the results from analyzing the properties of the coefficients in each domain. To effectively hide the image information, 25%, 1.5625%, and 0.0244% of the original fringe pattern need to be encrypted for hologram-domain scheme, DWT-domain scheme, and DCT-domain scheme, respectively. Consequently the DCT-domain scheme was the most efficient and it is caused by the fact that the ability for DCT to concentrate the energy of a given 2-dimensional image into a small area is the best. The encryption schemes and the analyses in this paper are expected to be used effectively on the researches on encryption and others for digital holograms.

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

2-step Phase-shifting Digital Holographic Optical Encryption and Error Analysis

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.244-251
    • /
    • 2011
  • We propose a new 2-step phase-shifting digital holographic optical encryption technique and analyze tolerance error for this cipher system. 2-step phase-shifting digital holograms are acquired by moving the PZT mirror with phase step of 0 or ${\pi}$/2 in the reference beam path of the Mach-Zehnder type interferometer. Digital hologram with the encrypted information is Fourier transform hologram and is recorded on CCD camera with 256 gray-level quantized intensities. The decryption performance of binary bit data and image data is analyzed by considering error factors. One of the most important errors is quantization error in detecting the digital hologram intensity on CCD. The more the number of quantization error pixels and the variation of gray-level increase, the more the number of error bits increases for decryption. Computer experiments show the results to be carried out encryption and decryption with the proposed method and the graph to analyze the tolerance of the quantization error in the system.