Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.
Park, Se-Jin;Jeong, Ui-Hyeon;Lee, Ji-Woo;Park, Jeong-Sook
Journal of Pharmaceutical Investigation
/
v.40
no.6
/
pp.353-356
/
2010
Although liposomes have been applied as drug delivery systems in various fields, the usage was limited due to the low encapsulation efficiency compared to other carrier systems. Here, cationic liposomes were prepared by mixing 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid, 1,2-dioleoyl-sn-glycerol-phosphoethanolamine (DOPE) and cholesterol (CH), and the liposomes were hydrated by varying the aqueous phases such as phosphate-buffered saline (PBS), 5% dextrose, and 10% sucrose in order to improve the encapsulation efficiency of bovine serum albumin (BSA). The particle size and zeta potential were determined by dynamic light scattering method and in vitro release patterns were investigated by spectrophotometry. Particle size and zeta potential of liposomes were varied depending on the ratio of DOTAP/DOPE/CH in range of 270-350 nm and 0.8-9.7 mV, respectively. Moreover, the addition of polyethylene glycol (PEG) improved the encapsulation efficiency from 37% to 43% as well as reduced particle sizes of liposomes while the liposomes were hydrated in PBS. When the liposomes were hydrated with 10% sucrose, the encapsulation efficiency of BSA was higher than any other groups. Whereas PBS was used as hydration solution, lower encapsulation efficiency was obtained compared with other groups. More than 60% of BSA was released from the liposomes hydrated with 10% sucrose; thereafter another 20% of BSA was released. Therefore, release pattern of BSA from cationic liposomes was extended release in this study. From the results, cationic liposomes dispersed in 10% sucrose would be potential carrier with high encapsulation efficiency.
A cyclotetraphosphazene derivative with eight chains was synthesized from octachlorocyclotetraphosphazene. The vesicles were prepared using the cyclotetraphosphazene derivative and cholesterol. The resulting vesicles were characterized by TEM and measurements of their encapsulation efficiency. The stability of the vesicles was enhanced with the addition of dihexadecylphosphate. The size and the encapsulation efficiency of the vesicles changed according to the amount of cholesterol added. The size and the encapsulation efficiency of the vesicle were lowest when the mole ratio (cholesterol: the cyclophosphazene derivative) was 0.9.
Previously, we have reported that PLGA nanoparticles were prepared for sustained release of water-soluble blue dextran and the particle size, in vitro release pattern and encapsulation were modulated by varying polymers. This study was designed to encapsulate plasmid DNA in PLGA nanoparticles and to investigate the effect of Polymers and temperatures. PLGA nanoparticles were fabricated with poloxamer 188 (P188) or poloxamer 407 (P407) by using spontaneous emulsification solvent diffusion method. As a model plasmid DNA, pCMV-Taq2B/1L-18 was encapsulated in PLGA nanoparticles. Then, the particle size, zeta potential and encapsulation efficiency of nanoparticles containing plasmid DNA were investigated. Particle sizes of PLGA nanoparticles prepared with P188 and P407 were in the range of 200-330 nm and 250-290 nm, respectively. Zeta potentials of nanoparticles were negative regardless of nanoparticle compositions. Encapsulation efficiency of P407 nanoparticles prepared at $30^{\circ}C$ was higher than those at other preparation condition. From the results, the PLGA nanoparticles prepared with poloxamers at different temperature, could modulate the particles size of nanoparticles, and encapsulation efficiency of plasmid DNA.
Individual solar cells must be connected together to give the appropriate current and voltage levels and they must also be protected from damage by the environment. [1] PV module consists of a glass/ polymer encapsulation/ solar cell string/ polymer encapsulation/ back sheet. Usually, encapsulation materials is used EVA(ethylene vinyl acetate), PVB(polyvinyl butyral), PO(polyolefin)sheet. This study is about fabrication of module using silicone material instead of above them. We got to know advantage that is fabrication time and efficiency of modules.
This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.
In this study, gemcitabine-loaded methoxy poly(ethylene glycol)-b-poly(L-lactide) (MPEG-PLLA) microparticles with different PEG block lengths were prepared by a W/O/W double emulsion technique. The present study focuses on the investigation of the influence of various preparative parameters such as the ratio of internal water phase and oil phase, polymer concentration, solvent composition of organic phase and salt concentration of external water phase on the morphology and encapsulation efficiency of the microparticles. The microparticles fabricated at high volume ratios of internal water phase to oil phase and at high polymer concentrations showed a relatively high encapsulation efficiency and low porosity. When a dichloromethane/ethyl acetate mixture was used as solvent, both the encapsulation efficiency and drug loading of the microparticles decreased as the level of ethyl acetate increased. The addition of a salt (NaCl) to the external water phase significantly improved the encapsulation efficiency up to 40%, and the microparticles became more spherical with their size and porosity decreased.
The aims of this research were to produce oil-in-water ${\beta}$-lactoglobulin/alginate (${\beta}$-lg/Al) nanoemulsions loaded with coenzyme $Q_{10}$ and to investigate the combined effects of heating temperature and alginate concentration on the physicochemical properties and encapsulation efficiency of ${\beta}$-lg/Al nanoemulsions. In ${\beta}$-lg/Al nanoemulsions production, various heating temperatures (60, 65, and $70^{\circ}C$) and alginate concentrations (0, 0.01, 0.03, and 0.05%) were used. A transmission electron microscopy was used to observe morphologies of ${\beta}$-lg/Al nanoemulsions. Droplet size and zeta-potential values of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$ were determined by electrophoretic light scattering spectrophotometer and HPLC, respectively. The spherically shaped ${\beta}$-lg/Al nanoemulsions with the size of 169 to 220 nm were successfully formed. The heat treatments from 60 to $70^{\circ}C$ resulted in a significant (p<0.05) increase in droplet size, polydispersity, zeta-potential value of ${\beta}$-lg/Al nanoemulsions, and encapsulation efficiency of coenzyme $Q_{10}$. As alginate concentration was increased from 0 to 0.05%, there was an increase in the polydispersity index of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$. This study demonstrates that heating temperature and alginate concentration had a major impact on the size, polydispersity, zeta-potential value and encapsulation efficiency of coenzyme $Q_{10}$ in ${\beta}$-lg/Al nanoemulsions.
Nowadays, the number of PV module corporation is increasing due to demand growth of silicon solar module. However almost study of module is research about increasing of efficiency for it. This study is evaluation and development for process of module using the silicone encapsulation material instead of existing EVA sheet. We are changed adding material ratio on silicone and thickness of silicone. So we get better efficiency than EVA sheet through the evaluation for silicone liquid and modulation. Also, we are test after establishing manufacture system being able to quicker than existing modules line. The result of EVA sheet is average 207.47W and silicone material is 211.32W so we think that silicone is better than EVA sheet.
Liposomes were studied as a drug delivery system. Multilamellar vesicles, small unilamellar vesicles and large unilamellar vesicles containing cytarabine were prepared using egg yolk lecithin and cholesterol. Large unilamellar vesicles showed the highest encapsulation efficiency of all and their encapsulation efficiency increased as the buffer volume decreased. Cholesterol increased the stability of liposomal drug products as drug carriers and reduced the permeability of drug across the liposomal membrane. The release rate of cytarabine increased with incubation temperature and decreased with cholesterol incorporation in liposomal membrane. The release mechanism of cytarabine from large unilamellar vesicles in vitro was chiefly due to simple diffusion across the liposomal membrane rather than liposomal rupture.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.