• Title/Summary/Keyword: emulsion polymerization

Search Result 238, Processing Time 0.029 seconds

Preparation of Micron Size Poly(n-Butyl Acrylate) Latex Particle by Sequential Seeded Emulsion Polymerization (연속적 Seed 유화중합법에 의한 마이크론 크기의 Poly(n-Butyl Acrylate) 라텍스입자 제조)

  • Kim, Jee-Hoon;Suh, Soong-Hyuck;Nam, Wan-Woo;Kim, Kyung-Chan;Kang, Shin-Won;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.889-894
    • /
    • 1999
  • Preparation of micron size polymer particles which have desired morphology, size, and structure by emulsion polymerization is very difficult due to coagulation of latex particles and formation of second generation particles. But there are attractive merits such as preparation of structural and functional polymer particles in seeded emulsion polymerization. Seeded emulsion polymerization of n-butyl acrylate(BA) was carried out to investigate the effects of stirring rate, reaction temperature, concentration of initiator, emulsifier, and cross-linking agent on the particle size and size distribution. By the combination of suitable reaction conditions, we succeeded in preparing $0.14{\sim}3.67{\mu}m$ diameter of poly(n-butyl acrylate)(PBA) particles using sequential seeded emulsion polymerization.

  • PDF

A Study on Starch-acrylic Graft Copolymerization by Emulsion Polymerization (유화중합에 의한 전분-아크릴 그래프트 공중합에 관한 연구)

  • Hwang, Ju-Ho;Ryu, Hoon;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.221-229
    • /
    • 2008
  • Starch as matrix polymer was used to do graft copolymerization with 2-ethylhexylacrylate, methyl methacrylate and acrylic acid. The polymerization was carried out by radical emulsion polymerization with increasing contents of starch. When 0.174% of $\alpha$-amylase as enzyme for starch was added, it was found that it made the best stable emulsion. The glass transion temperature of the polymerized material was increased with starch contents. The particle size and viscosity of the emulsion increased with starch contents due to the increased hydroxy group. Peel strength also increased with contents of starch because the enhanced hydroxy group caused to increase affinity between substrate surface and polymer materials. However, the initial tackiness decreased with starch contents owing to film hardness by higher glass transion temperature.

Part 1 : Soap-Free Emulsion Copolymerization of Styrene with COPS-I (Part 1 : Styrene과 COPS-I의 무유화공중합)

  • Lee, KiChang;Choo, HunSeung;Ha, JeongMi
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • Monodisperse poly[styrene-co-(COPS-I)] latices in the size range of 165~550nm were successfully prepared by soap-free emulsion polymerization with various polymerization conditions (Styrene, COPS-I, KPS, DVB concentrations and polymerization temperature). In general, the COPS-I and KPS, DVB concentrations and polymerization temperature were closely related to the polymerization rate and the number of particles, molecular weight, and zeta potential. The polymerization rate and zeta potential increased, but molecular weight decreased, with increasing in the number of particles.

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

The research of one-step emulsion polymerization of aniline and its conducting blends with polystyrene (에멀젼중합법으로 제조된 폴리아닐린과 폴리스타이렌과의 전도성블렌드에 대한 연구)

  • 이보현;김태영;김종은;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.259-262
    • /
    • 2001
  • Stable polyaniline-dodecylbenzenesulfonic acid (PANI-DBSA) fully dissolved in toluene was obtained by a direct one-step emulsion polymerization technique. The polymerization of aniline was carried out in an emulsion comprising water, toluene and DBSA acting both as a surfactant and a dopant for PANI. After the proper washing process was performed, the conductivities of obtained PANI-DBSA complexes increased with increase APS/Aniline molar ratio and DBSA/Aniline molar ratio. The UV-Vis absorption spectra and TGA thermograms of PANI-DBSA complexes also supported these results. PANI-DBSA/PS blends were prepared by mixing PANI-DBSA complexes with PS in toluene. These blends exhibited electrical conductivity of 0.371S/cm at a low PANI-DBSA content (7 wt.%)

  • PDF

Polydispersity and Particle Size Distribution of Polystyrene Latex Prepared by Ultrasound Induced Emulsion Polymerization (초음파에너지가 도입된 유화중합공정에서 Polystyrene Latex의 분산도 및 입자분포 특성)

  • Kim, Won-Il;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.110-116
    • /
    • 1998
  • A new technology was introduced to the emulsion polymerization. It is the ultrasonic activation method which replaced a chemical initiator and the environmentally benign process. In this study, free radicals were produced by a pulse type ultrasound energy irradiation, then polystyrene latex was polymerized without chemical initiator. With ultrasonic energy density, the degree of polymerization, average molecular weight, and particle size were increased, but the polydispersity index for the molecular weight and the particle size were decreased. The optimum condition of emulsifier concentration and temperature was found to be 1.0 wt.% SDS and $40^{\circ}C$, respectively. As a result, the emulsion polymerization process without chemical initiator was proved to be comparable to common latex properties such as average molecular weight, molecular weight distribution, particle size, etc.

  • PDF

A Study on the Synthesis of Starch-Acrylic Polymer by Emulsion Polymerization (유화중합에 의한 전분-아크릴 고분자의 합성에 관한 연구)

  • Lee, Mi-Suk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.58-62
    • /
    • 2010
  • The acrylic monomers were graft-polymerized to starch as matrix polymer by emulsion polymerization. Viscosity and particle size of the emulsion were increased with starch contents due to interaction with water and particle swelling toward the water phase by hydroxy group of starch. Chemical stability of the emulsion was also increased with enhancement of starch, but water and alkali resistance were reduced with increasing starch contents because of the increasement of hyrophilicity. Opacity of the starch-acrylic emulsion compound containing calcium carbonate was decreased with contents of starch by its intrinsic color. The film of starch-acrylic polymer showed more clear appearance with increasing starch contents owing to enhancement of amorphous state.

Study on the Emulsion Polymerization of poly(vinyl acetate-co-ethylene) Using Poly(vinyl alcohol) as Emulsifier (Poly(vinyl alcohol)을 이용한 Poly(vinyl acetate-co-ethylene) Emulsion 중합에 대한 연구)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.89-99
    • /
    • 2010
  • In this paper, for polymerization of poly(vinyl acetate-co-ethylene) (VAE) by redox system using poly(vinyl alcohol) (PVOH) as emulsifier on the properties of the final emulsion, and pH changes affect the physical properties of the final emulsion was investigated. The results of the molecular weight of PVOH had a dramatic impact on the emulsion properties. The used a low molecular weight of PVOH products was obtained low viscosity and using the high molecular weight of PVOH were obtained high viscosity product. However, changing the pH of the final polymerized product properties for the PVOH obtained different results. Generally, a poly(vinyl acetate) emulsion by a high degree of polymerization and high molecular weight of PVOH was obtained high viscosity of the final emulsion. But, in VAE was lower emulsion viscosity in high pH. This is the molecular weight of the emulsion during the synthesis of PVOH is considered to be affected by degradation. The final viscosity was decreased by grafting ratio and molecular weight were decreased with increasing of pH.

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Kim, Seul-Gi;Seo, Young-Gon;Cho, Young-Jin;Shin, Jin-Sub;Gil, Seung-Chul;Lee, Won-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1891-1896
    • /
    • 2010
  • Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.

Emulsion Graft Copolymerization of Methyl Methacrylate onto Cotton Fiber (면섬유에 대한 Methyl Methacrylate의 유화 그라프트 중합)

  • Bae Hyun-Sook;Ryu Hyo-Seon;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.3 s.39
    • /
    • pp.271-280
    • /
    • 1991
  • Emulsion graft copolymerization of MMA onto cotton fiber using Ce(IV) salt as an initiator was carried out. Graft yield and graft efficiency were observed according to the kinds and concentrations of emulsifier and polymerization conditions. The physical properties of MMA grafted cotton fabric were investigated. The results of this study were as follows: 1. The heighest graft yield of emulsion graft polymerization occurred at the concentration below cmc of emulsifier, which was different from emulsion polymerization. Nonionic sur- factant as an emulsifier was more effective than anionic one. 2. The highest graft yield was obtained at the initiator concentration $1{\times}10^{-2}mol/l$. The viscometric molecular weight of PMMA was in the order of 106. 3. As reaction time increased, the graft yield increased but the graft efficiency decreased. 4. Elevation of reaction temperature resulted in increase of graft yield. The apparent activation energy of MMA graft polymerization was 4.72 Kcal/mol. 5. Physical properties of MMA grafted cotton fabric varied with increase of grafting. Thickness and stiffness showed a noticeable increase, whereas tensile strength and elongation was slightly increased. Crease recovery increased as the graft yield increase up to $50\%$ and decreased thereafter.

  • PDF