• Title/Summary/Keyword: emotional AI fashion

Search Result 6, Processing Time 0.034 seconds

A Study on the Characteristics of AI Fashion based on Emotions -Focus on the User Experience- (감성을 기반으로 하는 AI 패션 특성 연구 -사용자 중심(UX) 관점으로-)

  • Kim, Minsun;Kim, Jinyoung
    • Journal of Fashion Business
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.

Classification System of Fashion Emotion for the Standardization of Data (데이터 표준화를 위한 패션 감성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.949-964
    • /
    • 2021
  • Accumulation of high-quality data is crucial for AI learning. The goal of using AI in fashion service is to propose of a creative, personalized solution that is close to the know-how of a human operator. These customized solutions require an understanding of fashion products and emotions. Therefore, it is necessary to accumulate data on the attributes of fashion products and fashion emotion. The first step for accumulating fashion data is to standardize the attribute with coherent system. The purpose of this study is to propose a fashion emotional classification system. For this, images of fashion products were collected, and metadata was obtained by allowing consumers to describe their emotions about fashion images freely. An emotional classification system with a hierarchical structure, was then constructed by performing frequency and CONCOR analyses on metadata. A final classification system was proposed by supplementing attribute values with reference to findings from previous studies and SNS data.

Consumer Acceptance Intention of AI Fashion Chatbot Service -Focusing on Characteristics of Chatbot's Para-social Presence- (AI 기반 패션 챗봇 서비스에 대한 소비자 수용의도 -챗봇의 준사회적 실재감 특성을 중심으로-)

  • Hur, Hee Jin;Kim, Woo Bin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.464-480
    • /
    • 2022
  • With the steady development of Artificial Intelligence (AI), online stores are adopting chatbot services as virtual shopping assistants. This study proposes the concept of para-social presence to explore the undiscovered role of fashion chatbots' emotional and relational characteristics on service acceptance. Based on the Technology Acceptance Model (TAM), this study investigates the effect of a chatbot's para-social presence on service acceptance intention through consumers' beliefs. The web-based experiment was conducted on adult consumers who experienced chatbot services in an online shopping situation. A total of 247 responses were analyzed using confirmatory factor analysis, structural equation modeling, and multi-group SEM by AMOS 21.0 and SPSS 23.0. The findings illustrate that the chatbot's intimacy positively influenced consumers' perceived enjoyment, while the chatbot's understanding had a significant effect on perceived usefulness and ease of use. The chatbot's involvement had a positive effect on all consumer beliefs. Moreover, perceived ease of use had a positive influence on usefulness. A greater level of perceived usefulness and enjoyment positively heightened consumers' service acceptance intention. This study also verifies the moderating role of a need for human interaction. Consumers with a high need for human interaction have a relatively low tendency to perceive chatbot services as useful.

Search for the Education of High-Tech Emotional Textile and Fashion (하이테크 감성 섬유패션의 교육 방향에 대한 모색)

  • Youn Hee Kim;Chunjeong Kim;Youngjoo Na
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • High-tech sensibility textile and fashion, in which consumers' emotions and various textile and fashion technologies are converged, is an important industrial group. It is important to develop the ability to apply in practice by gathering the creative by understanding other fields and exchanging ideas through interdisciplinary collaboration in the field of emotional engineering. Through interdisciplinary research and collaboration, talent must be nurtured of individuals who would lead the era of the 4th Industrial Revolution with the ability to empathize with others as well as the creative convergence-type intellectual ability necessary for the rapidly changing society. To determine content-creation methods, basic research is conducted. Additionally, this study investigates on the current status and educational process of the emotional textile-fashion industry worldwide. To nurture talents in the textile and fashion sensibility science, the basic contents are created to manage the knowledge that delivers sensibility science and the ICT related to this field, as well as in the intensive, PB-style conceptual design based on sensibility. The process from derivation of consumer emotion analysis and product development can be experienced through smart kit practice. Moreover, various methods are developed to set up intellectual property rights generated while developing ICT convergence products as start-ups. The study also covers new knowledge rights to develop emotional textile fashion.

Development of personalized clothing recommendation service based on artificial intelligence (인공지능 기반 개인 맞춤형 의류 추천 서비스 개발)

  • Kim, Hyoung Suk;Lee, Jong Hyuck;Lee, Hyun Dong
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.116-123
    • /
    • 2021
  • Due to the rapid growth of the online fashion market and the resulting expansion of online choices, there is a problem that the seller cannot directly respond to a large number of consumers individually, although consumers are increasingly demanding for more personalized recommendation services. Images are being tagged as a way to meet consumer's personalization needs, but when people tagging, tagging is very subjective for each person, and artificial intelligence tagging has very limited words and does not meet the needs of users. To solve this problem, we designed an algorithm that recognizes the shape, attribute, and emotional information of the product included in the image with AI, and codes this information to represent all the information that the image has with a combination of codes. Through this algorithm, it became possible by acquiring a variety of information possessed by the image in real time, such as the sensibility of the fashion image and the TPO information expressed by the fashion image, which was not possible until now. Based on this information, it is possible to go beyond the stage of analyzing the tastes of consumers and make hyper-personalized clothing recommendations that combine the tastes of consumers with information about trends and TPOs.

A Study on Consumer Type Data Analysis Methodology - Focusing on www.ethno-mining.com data - (소비자유형 데이터 분석방법론 연구 - www.ethno-mining.com 데이터를 중심으로 -)

  • Wookwhan, Jung;Jinho, Ahn;Joseph, Na
    • Journal of Service Research and Studies
    • /
    • v.12 no.2
    • /
    • pp.80-93
    • /
    • 2022
  • This study is a study on a methodology that can extract various factors that affect purchase and use of products/services from the consumer's point of view through previous studies, and analyze the types and tendencies of consumers according to age and gender. To this end, we quantify factors in terms of general personal propensity, consumption influence, consumption decision, etc. to check the consistency of data, and based on these studies, we conduct research to suggest and prove data analysis methodologies of consumer types that are meaningful from the perspectives of startups and SMEs. did As a result, it was confirmed through cross-validation that there is a correlation between the three main factors assumed for data analysis from the consumer's point of view, the general tendency, the general consumption tendency, and the factors influencing the consumption decision. verified. This study presented a data analysis methodology and a framework for consumer data analysis from the consumer's point of view. In the current data analysis trend, where digital infrastructure develops exponentially and seeks ways to project individual preferences, this data analysis perspective can be a valid insight.