• Title/Summary/Keyword: emission control strategy

Search Result 76, Processing Time 0.028 seconds

Development of a Fuel-Efficient Driving Strategy in Horizontal Curve Section (평면곡선부 구간에서의 연료효율적 주행전략 개발)

  • Jeong, Yangrok;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.77-84
    • /
    • 2016
  • In 2012, total GHG emissions in transport sector reached 88 Million ton CO2eq. The emissions generated in the road accounted for 94% of the transport sector. Currently, there are many efforts to operate an education and campaign for eco-driving. However study for eco-friendly vehicle control considering road alignment is limited. Therefore, the purpose of this study is to address fuel-efficient driving strategy in horizontal curve section. To fulfill the goal, designed ideal freeway horizontal curve road follows regulations about road structure. And safety speed is calculated for considering vehicle's safety on horizontal curve road. Authors composed the acceleration and deceleration scenario for each horizontal curve section and generated the speed profiles that are limited by the safety speed. Speed profiles are converted into force that horizontal curve affect to fuel consumption. Then, we calculated fuel consumption using Comprehensive Modal Emission Model. Then, we developed eco-driving strategy by selecting most fuel-efficient scenario. To validate this strategy, we selected study site and compared fuel consumption for eco and manual driving. As the result, fuel consumption when driver used eco-driving was lessened by 20.73% than that of manual driving.

Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2023-2033
    • /
    • 2021
  • Objective: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. Methods: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. Results: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4++NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. Conclusion: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF

Unsteady Analysis for Combustion Characteristics of PRF75 Fuel under HCCI Conditions (균일예혼합 압축착화 조건에서 PRF75 연료의 비정상 연소특성 해석)

  • Oh, Tae Kyun;Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • HCCI engines have mainly focused on achieving low temperature combustion in order to obtain higher efficiency and lower emission. One of practical difficulties in HCCI combustion is to control the start of combustion and subsequent combustion phasing. The choice of primary reference fuels in HCCI strategy is one of various promising solutions to make HCCI combustion ignition-controlled. The behavior of ignition delay to the frequency variation of sinusoidal velocity oscillation is computationally investigated under HCCI conditions of PRF75 using a reduced chemistry in a counterflow configuration. The second-stage ignition is more delayed as the higher frequency is imposed on nozzle velocity fluctuation whereas the first-stage ignition is not much influenced.

The Development of Lean-Burn Eng. (린-번 엔진 개발)

  • Lee, Tae-Pyo;Yim, Kook-Hyun;Kim, Jong-Boo;Kim, Min-Hyung;Ah, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.1005-1008
    • /
    • 1999
  • HMC has developed the lean burn system with alpha 4-valve into domestic market in the end of 1997. In a viewpoint of saving energy and prevention of global warming (CO2 reduction), the lean burn system has recently attracted a considerable attentions in gasoline engines. There has been, however, difficulty in extending LML(Lean Misfire Limit) enough to meet the emission regulations and satisfaction of driveability. In this paper some descriptions will be given upon the new technology of lean bum engine which will be installed in Accent, especially the improvement of the combustion, the development of engine management system such as intake system and wide range air fuel control strategy, and the result of vehicle test.

  • PDF

Evaluation of Servo Press Slide Motion for Springback Reduction of High Strength Steel (고장력강판의 스프링백 저감을 위한 서보프레스 슬라이드모션 평가)

  • Song, J.S.;Youn, K.T.;Park, C.D.;Heo, J.Y.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.277-285
    • /
    • 2017
  • Vehicle weight reduction is a known strategy to improve fuel efficiency and strengthen exhaust gas regulation. The use of high strength steel can satisfy safety, efficiency, emission, manufacturability, durability, and cost requirements. However, springback of high strength steel results in undesired shape defects. Springback is one of the most important issues of high strength steel for many applications in an automobile. Servo press has various capabilities to improve defects, process conditions, and productivity problems when forming a high strength steel. Especially, servo press can be set to function with variable slide motion in a single operation. In this study, the effect of servo press slide motion on 980MPa high strength steel was investigated through U-bending test.

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System (통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발)

  • MINWOO AN;DAEIL HYUN;JAEYOUNG HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.230-239
    • /
    • 2024
  • Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst (선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구)

  • Park, Young-Joon;Hong, Woo-Kyoung;Ka, Jae-Geum;Cho, Yong-Seok;Joo, Jae-Geon;Kim, Hyun-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.