• Title/Summary/Keyword: embryonic tissue

Search Result 172, Processing Time 0.032 seconds

THE EFFECT OF BONE MORPHOGENETIC PROTEIN 2(BMP2) ON THE GROWTH OF CRANIAL BONE AND EARLY MORPHOGENESIS OF THE CRANIAL SUTURE (Bone Morphogenetic Protein 2 가 두개골 성장 및 두개봉합부의 초기형태발생에 미치는 영향)

  • Jung, Hae-Kyung;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.217-228
    • /
    • 2003
  • Co-ordinate growth of the brain and skull is achieved through a series of tissue interactions between the developing brain, the growing bones of the skull and the sutures that unite the bones. Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of these interactions. Bmp2, one of bone morphogenetic proteins (Bmps), is involved in the regulation of the shapes of individual bones and the relative proportions of the skeleton. Mutations in the homeobox gene Msx2, known as a downstream gene of Bmp, cause Boston-type human craniosynostosis. The phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. These facts suggest important roles of Bmp2, Msx2 and Dlx5 genes in the cranial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of Bmp2(E15-18), Msx2 and Dlx5 genes in the developing sagittal suture of calvaria during the embryonic stage. Bmp2 mRNA was intensely expressed in the osteogenic fronts and also at the low level in the periosteum of parietal bones during embryonic stage, Msx2 mRNA was intensely expressed in the sutural mesenchyme and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and parietal bones. To further examine the role of Bmp signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of Bmp2-soaked beads onto the osteogenic fronts after 48 hours organ culture resulted in the increase of the tissue thickness and cell number around Bmp2 beads, compared to BSA control beads. In addition Bmp2 induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of FGF2 did not induce the expression of Msx2 and Dlx5. Taken together, these data indicate that Bmp2 signaling molecule has a important role in regulating the cranial bone growth and early morphogenesis of cranial suture. We also suggest that Bmp signaling is involved in all the stages of osteogenesis of cranial bones and the maintenance of cranial suture by regulating Msx2 and Dlx5 genes, and that Msx2 and Dlx5 genes are specific transcription factors of Bmp signaling pathway.

  • PDF

DEVELOPMENT OF ALLOTRANSPLANTED TOOTH GERMS AT VARIOUS DEVELOPMENTAL STAGE INTO THE WHITE RAT'S EXTRACTION SOCKET (흰쥐의 발치와에 이식한 단계별 치아싹의 발육 과정)

  • Jung, Hwi-Hoon;Jung, Han-Sung;Kim, Seoung-Oh;Choi, Hyung-Jun;Lee, Jae-Ho;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • The purpose of this study is to evaluate at which stage of tooth germ would develop into normal calcification and hence to increase the success rate of transplantation. Therefore, tooth germs on the 15th, 17th embryonic day and the 3rd day of birth were separated for allotransplantation into maxilla of adult rat of 11 weeks. Calcification processes were analyzed radiographically and histopathologically at 4 weeks and 8 weeks after allotransplantation. The results are as follows: 1. Allotransplanted tooth germ at 4 weeks and 8 weeks showed delayed calcification compared to that of normal odontogenesis. 2. At 4 weeks, abnormal calcified tissue, such as odontoma and ankylosis of osteodentin with surrounding alveolar bone were observed. 3. At 8 weeks, allotransplanted tooth germs of the 15th and 17th embryonic day showed calcification and osteodentin surrounded by periodontal ligament. 4. At 8 weeks, allotransplanted tooth germs of the 3rd day of birth showed calcification composed of cementum and osteodentin. In this study, we observed small sized and amorphous calcified tissue from allotropic allotransplantation of tooth germs. Since these calcified tissue were underdeveloped and shaped irregularly, for calcification into normal tooth form, further study needs consideration about the reduction of surgical trauma, developmental stage of transplanted tooth germ, blood supply from recipient site, fixation method in transplanted site and period of transplantation.

  • PDF

Comparative Results of Embryo Development and Clinical Pregnancy using Sperm Retrieved from Fresh and Frozen-thawed Testicular Tissue from Patients with Obstructive and Non-obstructive Azoospermia (폐쇄성과 비폐쇄성 무정자증 환자에서 신선고환조직 정자와 동결고환조직 정자를 이용한 배발달률과 임신율의 비교 결과)

  • Park, Yong-Seog;Choi, Su-Jin;Lee, Sun-Hee;Park, Dong-Wook;Lim, Chun-Kyu;Jun, Jin-Hyun;Koong, Mi-Kyoung;Park, Chan-Woo;Song, In-Ok;Seo, Ju-Tae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.301-310
    • /
    • 2009
  • Objective: To compare the embryonic development and pregnancy results using sperms retrieved from fresh and frozen-thawed testicular tissue in patients with obstructive (OA) and non-obstructive azoospermia (NOA). Methods: A total two hundred twenty-two cycles of TESE-ICSI were performed in OA and NOA. Sperms were retrieved from fresh and frozen-thawed testicular tissue. ICSI was performed patient's own sperm. Fertilization was assessed 16~18 hrs after ICSI. Embryo development and pregnancy rates were analysed. Results: The fertilization rates were significantly different between OA and NOA patients (75.2% vs. 56.7%, p<0.05), however, embryo development did not differ between the groups (96.9% vs. 98.0%). Likewise, OA and NOA groups had no differences in their clinical pregnancy and delivery rates, 33.9% vs. 36.0% and 28.1% vs. 28.0%, respectively. With regard to sperm retrieved from fresh testicular tissue, fertilization rates were significantly different between the OA and NOA groups (76.4% vs. 52.9%, p<0.05); however, embryo development, clinical pregnancy and delivery rates were not different. For sperm retrieved from thawed testicular tissue, the fertilization rates were significantly different between the two groups (74.7% OA group vs. 65.6% NOA group, p<0.05); however, embryo development, clinical pregnancy and delivery rates were not different. Conclusions: Embryo development and clinical pregnancy did not differ in patients with obstructive and non-obstructive azoospermia, whether sperm retrieved from fresh and thawed testicular tissue were used, although the fertilization rates were different. Therefore, ICSI with sperm retrieved from fresh and thawed testicular tissue could achieve relevant clinical pregnancy results in patients with azoospermia.

In vitro Plantlet Regeneration of Loblolly Pine, Pitch Pine, and Their Hybrid -The Culture of Embryonic Tissues- (조직배양(組織培養)에 의한 테다, 리기다 및 교잡종(交雜種) 소나무의 식물체(植物體) 번식(繁殖) -배조직(胚組織)의 배양(培養)-)

  • Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.401-411
    • /
    • 1989
  • The embryos of Pinus taeda, P. rigida, and P. taeda ${\times}$ rigida were cultured for adventitious shoot regeneration in vitro. Culture media were modified from Gresshoff and Doy (MGD), Murashige and Skoog (MMS), Lloyd and McCown (MLM), and Schenk and Hildebrandt (MSH). NAA was added to initiation media at a concentration of 0.1 or 0.01 mg/l. BAP was used at the concentrations of 0.1. 0.5, 1, 2, or 5mg/l. Each explant was induced for 3-4 weeks on solid medium. All explants were cultured up to 16 weeks. Illumination was about $1506{\pm}540lux$ at the level of the tissues in the growth room with a temperature of $25{\pm}2^{\circ}C$. A 16-hour photoperiod per 24 hours was used. Half-strength medium was used for all the subcultures. For shoot production by loblolly pine, MMS, MLM, or MSH is preferred with 5 mg/l BAP with either 0.1 or 0.01 mg/l NAA. For shoot production by pitch pine, MMS, MLM, or MSH is recommended with 2 or 5 mg/l BAP with 0.1 mg/l NAA. For shoot production by the hybrid pine, MMS or MLM is more effective with 1, 2 or 5 mg/l BAP with 0.1 mg/l NAA. There were no differences recognized among the species tried in the patterns of bud formation and shoot development. Different composition of media, in major and minor salts or possibly in vitamins, should be tested for the two developmental stages of adventitious shoots ; the induction of shoot buds and the elongation of them into shoots.

  • PDF

Plantlet Regeneration via Somatic Embryogenesis from Hypocotyls of Common Buckwheat (Fagopyrum esculentum Moench.)

  • Kwon, Soo-Jeong;Han, Myong-Hae;Huh, Yoon-Sun;Roy, Swapan Kumar;Lee, Chul-Won;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.331-335
    • /
    • 2013
  • Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micro-propagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species, Fagopyrum esculentum which differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) $2.0mg{\cdot}L^{-1}$, benzyladenine (BA) $1.0mg{\cdot}L^{-1}$ and 3% sucrose. Friable callus was transferred to solidified MS media containing BA ($1.0mg{\cdot}L^{-1}$) with various concentrations of 2,4-dichlorophenoxyacetic acid for the induction of embryogenesis. The optimum concentrations of growth regulators (for regeneration of plantlet) were indole-3-acetic acid ($2.0mg{\cdot}L^{-1}$), Kinetin ($1.0mg{\cdot}L^{-1}$), BA ($1.0mg{\cdot}L^{-1}$). Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5% to 20%. Whole plants were obtained at high frequencies when the embryogenic calli with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. The main objective of this research was to develop an efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.

Differentiation of Osteoblast Progenitor Cells from Human Umbilical Cord Blood (제대혈액에서 골조직 특이세포로의 분화)

  • Hong, Seung-Jin;Lee, Eun-A;Chae, Gue-Tae;Han, Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.166-174
    • /
    • 2002
  • Background: Human umbilical cord bloods, which could be taken during the delivery are utilized as a source of hematopoietic stem cells. Also in cord blood, there are several kinds of stem cells such as endothelial and mesenchymal stem cells. Methods: We isolated the mesenchymal stem cells from human umbilical cord bloods and confirmed the differentiation of these cells into osteoblast progenitor cells. The mesenchymal stem cells derived from umbilical cord blood have the ability to differentiate into specific tissue cells, which is one of characteristics of stem cells. These cells were originated from the multipolar shaped cells out of adherent cells of the umbilical cord blood mononuclear cell culture. Results: The mesenchymal stem cells expressed cell surface antigen CD13, CD90, CD102, CD105, ${\alpha}$-smooth muscle actin and cytoplasmic antigen vimentine. Having cultrued these cells in bone formation media, we observed the formation of extracellular matrix and the expression of alkaline phosphatase and of mRNA of cbfa-1, ostoecalcin and type I collagen. Conclusion: From these results we concluded that the cells isolated from the umbilical cord blood were mesenchymal stem cells, which we could differentiate into osteoblast when cultured in bone formation media. In short, it is suggested that these cells could be used as a new source of stem cells, which has the probability to alternate the embryonic stem cells.

Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor

  • Kim, Ki Yeon;Lee, Gwanghee;Yoon, Minsang;Cho, Eun Hye;Park, Chan-Sik;Kim, Moon Gyo
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.548-561
    • /
    • 2015
  • By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the $CD31^+$endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-$1^+$ fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.

Hox Genes are Differentially Expressed during Mouse Placentation

  • Park, Sung-Joo;Lee, Ji-Yeon;Ma, Ji-Hyun;Kim, Helena Hye-Soo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.169-174
    • /
    • 2012
  • The placenta is an extraembryonic tissue that is formed between mother and fetus and mediates delivery of nutrients and oxygen from the mother to the fetus. Because of its essential role in sustaining the growth of the fetus during gestation, defects in its development and function frequently result in fetal growth retardation or intrauterine death, depending on its severity. Vertebrate Hox genes are well known transcription factors that are essential for the proper organization of the body plan during embryogenesis. However, certain Hox genes have been known to be expressed in placenta, implying that Hox genes not only play a crucial role during embryonic patterning but also play an important role in placental development. So far, there has been no report that shows the expression pattern of the whole Hox genes during placentation. In this study, therefore, we investigated the Hox gene expression pattern in mouse placenta, from day 10.5 to 18.5 of gestation using real-time RT-PCR method. In general, the 5' posterior Hox genes were expressed more in the developing placenta compared to the 3' Hox genes. Statistical analysis revealed that the expression of 15 Hox genes (Hoxa9, -a11, -a13/ -b8, -b9/ -c6, -c9, -c13/ -d1, -d3, -d8, -d9, -d10, -d11, -d12) were significantly changed in the course of gestation. The majority of these genes showed highest expression at gestational day 10.5, suggesting their possible role in the early stage during placental development.

In Vitro Fertilization and Embryonic Development of Porcine Oocytes Matured in mSOF

  • J. M. Koo;S. H. Hyun;Lee, B. C.;S. K. Kang;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.3
    • /
    • pp.239-249
    • /
    • 2002
  • Embryos derived from pig oocytes matured in mSOF are able to develop to blastocysts after IVF. Experiment 1 evaluated the effects of two maturation media (TCM-199 vs mSOF) on maturation rate, fertilization parameters, including penetration, polyspermy, male pronuclear formation, and the mean number of sperm penetrated per oocyte. Experiment 2 and Experiments 3 examined the effects of two maturation media on zona pellucida solubility and cortical granule distribution by transmissible electron microscopy, respectively. Experiment 4 assessed the effects of two maturation media on the in vitro embryo cleavage rate and development to blastocyst. Lastly, experiment 5 examined the cell number of blastocyst. An effect of media (P<0.05) was detected for mSOF on the mean number of sperm per oocyte. In TCM group, zona digestion time (196.5$\pm$15.5 vs 131.6$\pm$20.1 before IVF, 397.5$\pm$30.3s vs 185.3$\pm$16.4s after IVF, p<0.05) was higher in TCM-199 group. No significant effects of media was observed on cortical granule distribution between two groups by TEM. An effect (P<0.05) was observed on embryo development to blastocyst (16% vs 8%) but not on cleavage rates. No significant effects of media was observed on total cell number of blastocyst. We found that the high mean number of sperm penetrated per oocyte and the weaker zona pellucida on the basis of the digestion time was shown in pig oocytes matured in mSOF, however, porcine oocyte maturation with supplemented synthetic oviduct fluid medium (mSOF) resulted in blastocyst cell numbers comparable to those observed with Tissue Culture Medium 199.

Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes

  • Piao, Mei Jing;Kumara, Madduma Hewage Susara Ruwan;Kim, Ki Cheon;Kang, Kyoung Ah;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.557-563
    • /
    • 2015
  • Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.