• 제목/요약/키워드: embryoid

검색결과 86건 처리시간 0.021초

Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells

  • Yoo, Hyunjin;Choi, Dongyoon;Choi, Youngsok
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.533-538
    • /
    • 2021
  • Objective: Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). Methods: We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. Results: We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. Conclusion: Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.

High Frequency of Callus Induction, its Proliferation and Somatic Embryogenesis in Cotton (Gossypium hirsutum L.)

  • Haq, Ikram-ul;Zafar, Yusuf
    • Journal of Plant Biotechnology
    • /
    • 제6권1호
    • /
    • pp.55-61
    • /
    • 2004
  • Callus induction and somatic embryogenesis are fundamental to cotton tissue culture biotechnology. An efficient protocol for callus induction, somatic embryogenesis and their maturation have been developed to regenerate plantlets from cotton (Gossypium hirsutum L.) variety coker 312. Embryogenic callus was initiated from hypo-cotyl region that was used as an explant at seedling stage when it was about 7-8 days old. Callus induction was achieved through culturing hypocotyls (5-7mm) on $MS_{1a} medium supplemented with 2,4-D (0.1 mg/L) and KT (0.5 mg/L) for six weeks. A friable, colorless, bulky and well proliferating callus becomes greenish with the addition of NAA (2.0 mg/L), ZT (0.1 mg/L) and removal of 2,4-D (M $S_{1b}$) cultured for two weeks then again transferred to $MS_{1a}. 2,4-dichlorophenoxyacetic acid (2,4-D) promoted the proliferation of embryogenic callus, but had a negative effect on the differentiation and germination of somatic embryos. ZT (0.1mg/L) and activated charcoal (2g/L), both hormones play an important role in differentiation and germination of somatic embryos in hypocotyls derived embryogenic callus but in case of cotton, such a capability have been observed on MS medium with 1.92 g/L $KNO_3$, but it is considered to attain somewhat more improvement. High embryogenesis frequency was achieved through nutrient deficient stress treatment. The frequency of globular embryogenesis (two-three folds) was achieved when well proliferating callus was (from $MS_{1a}$ media) cultured on MS (1/5 strength) medium for four weeks. Here the development of anthocyanins is the best indicator for somatic embryogenesis. However, when embryoid callus was cultured on MS (full strength) medium, the globular embryos were developed into normal plantlets immediately. In this procedure 27.49% cotyledenary embryos were developed. Of that 70% cotyledenary embryos were developed not only into normal plantlets but rooted simultaneously, when cultured on MS (with 0.05 mgg/L giberrelic acid) medium. So complete plants could be regenerated through somatic embryogenesis from hypocotyl explants within 6 months.s.

Expression of the C1orf31 Gene in Human Embryonic Stem Cells and Cancer Cells

  • Ahn, Jin-Seop;Moon, Sung-Hwan;Yoo, Jung-Ki;Jung, Hyun-Min;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.223-227
    • /
    • 2008
  • Human embryonic stem (ES) cells retain the capacity for self-renewal, are pluripotent and differentiate into the three embryonic germ layer cells. The regulatory transcription factors Oct4, Nanog and Sox2 play an important role in maintaining the pluripotency of human ES cells. The aim of this research was to identify unknown genes upregulated in human ES cells along with Oct4, Nanog, and Sox2. This study characterizes an unknown gene, named chromosome 1 open reading frame 31 (C1orf31) mapping to chromosome 1q42.2. The product of C1orf31 is the hypothetical protein LOC388753 having a cytochrome c oxidase subunit VIb (COX6b) motif. In order to compare expression levels of C1orf31 in human ES cells, human embryoid body cells, vascular angiogenic progenitor cells (VAPCs), cord-blood endothelial progenitor cells (CB-EPCs) and somatic cell lines, we performed RT-PCR analysis. Interestingly, C1orf31 was highly expressed in human ES cells, cancer cell lines and SV40-immortalized cells. It has a similar expression pattern to the Oct4 gene in human ES cells and cancer cells. Also, the expression level of C1orf31 was shown to be upregulated in the S phase and early G2 phase of synchronized HeLa cells, leading us to purpose that it may be involved in the S/G2 transition process. For these reasons, we assume that C1orf31 may play a role in on differentiation of human ES cells and carcinogenesis.

Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain

  • Yu, Shu-Min;Yan, Xing-Rong;Chen, Dong-Mei;Cheng, Xiang;Dou, Zhong-Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells in vitro.

  • Cho, Hwang-Yoon;Lee, Chang-Hyun;Kil, Kwang-Soo;Yoon, Ji-Yeon;Shin, Hyun-Ah;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, SePill;Lim, Jin-Ho
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.104-104
    • /
    • 2003
  • As an effort to direct differentiation of human embryonic stem (hES, MB03) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 and examined the expression of tyrosine hydroylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). Experimentally, cells were transfected with linearized Nurr1 cDNA in pcDNA3.1 (+)-hygovernight followed by selection in medium containing hygromycin-B (150 $\mu$/ml). Expression of Nurr1 mRNA was confirmed by RT-PCR and protein by immunocytochemistry in the drug resistant clones. In order to study the effect of Nurr1 protein on the differentiation pattern of ES cells, one of the positive clones (MBNr24) was allowed to form embryoid body (EB) for 2 days and were induced to differentiate for another 4 days using RA (1 $\mu M$) and AA (50 mM) (2-/4+ protocol) followed by selection in N2 medium for 10 or 20 days. After 10 days in N2 medium, cells immunoreactive to anti-GFAP, anti-TH, or anti-NF200 antibodies were 38.8%, 11%, and 20.5%, respectively. After 20 days in N2 medium, cells expressing GFAP, TH, or NF200 were 28%, 15% and 44.8%, respectively but approximately 9% of MB03 expressed TH protein when the cells were induced to differentiate using a similar prorocol, These results suggest that ectopic expression of Nurr1 enhances generation of TH+ cells as well as neuronal cells when hES cells were differentiated by 2-/4+ protocol.

  • PDF

Differentiation of Human ES Cells to Endodermal Lineage Cells

  • Sung, Ji-Hye;Lim, Chun-Kyu;Cho, Jae-Won;Park, Hye-Won;Koong, Mi-Kyoung;Yoon, Hyun-Soo;Jun, Jin-Hyun
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.60-60
    • /
    • 2003
  • Embryonic stem (ES) cells have property of self-renewal and can differentiate into the cells of all three primary germ layers. Recently, many growth factors, alteration of culture condition and gene modifications have been used to differentiate mouse and human ES cells into specific cell types. This study was performed to evaluate the differentiation protocol for human ES cells to the endodermal lineage cells. Human ES cells (Miz-hESl ) were cultured on STO feeder layer mitotically inactivated with mitemycin C, and embryoid bodies (EBs) were formed by suspension culture. Differentiation protocol of EBs consisted of three steps: stage I, culture of EBs for 6 days with ITSFn medium; stage II, culture of stage I cells for 8 days with N2 medium ; stage III, culture of stage II cells for 22 days with N2 medium. mRNA levels of the endodermal lineage differentiation genes were analyzed by semi- quantitative RT-PCR. The Oct-4 expression, a marker of the pluripotent state, was detected in undifferentiated human ES cells but progressively decreased after EBs formation. Differentiating human ES cells expressed marker genes of endodermal differentiation and pancreatic islet cells. GATA4, a-fetoprotein, Glut-2, and Ngn3 were expressed in all stages. However, albumin and insulin were expressed in only stage III cells. The human ES cells can be differentiated into endodermal lineage cells by multiple step culture system using various supplements. We are developing the more effective protocols for guided differentiation of human ES cells.

  • PDF

H19 Gene Is Epigenetically Stable in Mouse Multipotent Germline Stem Cells

  • Oh, Shin Hye;Jung, Yoon Hee;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.635-640
    • /
    • 2009
  • Testis-derived germline stem (GS) cells can undergo reprogramming to acquire multipotency when cultured under appropriate culture conditions. These multipotent GS (mGS) cells have been known to differ from GS cells in their DNA methylation pattern. In this study, we examined the DNA methylation status of the H19 imprinting control region (ICR) in multipotent adult germline stem (maGS) cells to elucidate how epigenetic imprints are altered by culture conditions. DNA methylation was analyzed by bisulfite sequencing PCR of established maGS cells cultured in the presence of glial cell line-derived neurotrophic factor (GDNF) alone or both GDNF and leukemia inhibitory factor (LIF). The results showed that the H19 ICR in maGS cells of both groups was hypermethylated and had an androgenetic pattern similar to that of GS cells. In line with these data, the relative abundance of the Igf2 mRNA transcript was two-fold higher and that of H19 was three fold lower than in control embryonic stem cells. The androgenetic DNA methylation pattern of the H19 ICR was maintained even after 54 passages. Furthermore, differentiating maGS cells from retinoic acid-treated embryoid bodies maintained the androgenetic imprinting pattern of the H19 ICR. Taken together these data suggest that our maGS cells are epigenetically stable for the H19 gene during in vitro modifications. Further studies on the epigenetic regulation and chromatin structure of maGS cells are therefore necessary before their full potential can be utilized in regenerative medicine.

Human Embryonic Stem Cell Transplantation in Parkinson′s Disease (PD) Animal Model: II. In Vivo Transplantation in Normal or PD Rat Brain

  • Choe Gyeong-Hui;Ju Wan-Seok;Kim Yong-Sik;Kim Eun-Yeong;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.19-19
    • /
    • 2002
  • This study was to examine whether the in vitro differentiated neural cells derived from human embryonic stem (hES, MB03) cells can be survived and expressed tyrosin hydroxylase(TH) in grafted normal or PD rat brain. To differentiate in vitro into neural cells, embryoid bodies (EB: for 5 days, without mitogen) were formed from hES cells, neural progenitor cells(neurosphere, for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) were produced from EB, and then finally neurospheres were differentiated into mature neuron cells in N2 medium(without bFGF) for 2 weeks. In normal rat brain, neural progenitor cells or mature neuron cells (1×10/sup 7/ cells/㎖) were grafted to the striatum of normal rats. After 2 weeks, when the survival of grafted hES cells was examined by immunohistochemical analysis, the neural progenitor cell group indicated higher BrdU, NeuN+, MAP2+ and GFAP+ than mature neuron cell group in grafted sites of normal rats. This result demonstrated that the in vivo differentiation of grafted hES cells be increased simultaneously in both of neuronal and glial cell type. Also, neural progenitor cell grafted normal rats expressed more TH pattern than mature neuron cells. Based on this data, as a preliminary test, when the neural progenitor cells were grafted into the striatum of 6-hydroxydopamine lesioned PD rats, we confirmed the cell survival (by double staining of Nissl and NeuN) and TH expression. This result suggested that in vitro differentiated neural progenitor cells derived from hES cells are more usable than mature neuron cells for the neural cell grafting in animal model and those grafted cells were survived and expressed TH in normal or PD rat brain.

  • PDF

Formation of Functional Cardiomyocytes Derived from Mouse Embryonic Stem Cells

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.76-76
    • /
    • 2003
  • Pluripotent embryonic stem cells can differentiate into beating cardiomyocytes with proper culture conditions and stimulants via embryo-like aggregates. We describe here the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. mES03 cells growing in colonies were dissociated and allowed to re-aggregated in suspension [embryoid body (EB) formation〕. To induce cardiomyocytic differentiation, cells were exposed to 0.75% dimethyl sulfoxide (DMSO) during EB formation for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EB was plated onto gelatin-coated dishes for differentiation. Spontaneously contracting colonies which appeared in approximately 4~5 days upon differentiation were mechanically dissected, enzymatically dispersed, plated onto coverslips, and then incubated for another 48~72 hrs. By RT-PCR, robust expression of cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta$($\beta$-MHC), cardiac transcription factor GATA4, and skeletal muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaC $h_{sm}$ ) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaCh) were reveled at a low level. In contrast, expression of myosin light chain (MLC-2V) and atrial natriuretic factor (ANF) were not detected during EB formation for 8 days. However, a strong expression of the atrial-specific ANF gene was expressed from day 8 onward, which were remained constant in EB. (cardiac specialization and terminal differentiation stage). Electrophysiological examination of spontaneously contracting cells showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes via 4+/4- protocol displayed biochemical and electrophysiological properties of subpopulation of cardiomyocytes.

  • PDF

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: II. Genetically Modified Human Embryonic Stem Cells Treated with RA/AA or b-FGF

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.75-75
    • /
    • 2003
  • Since the establishment of embryonic stem cell, pluripotency of the cells was known to allow differentiation of the cells into various cell types consisting whole body. Several protocols have been developed to induce expression of specific genes.. However, no precise protocol that will generate a single type of the cells from stem cells has been reported. In order to produce cells suitable for transplantion into brain of PD animal model, which arouse due to a progressive degeneration of dopaminergic neurons in midbrain, human embryonic stem cell (hESC, MB03) was transfected with cDNAs cording for tyrosine hydroxylase (TH). Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by the two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA/ascorbic acid (AA), embryoid bodies (EB, for 4days) derived from hES cells were exposed to RA (10$^{-6}$ M)/AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. By indirect immunocytochemical studies, proportion of cells expressing NF200 increased rapidly from 20% at 7 days to 70 % at 28 days in RA/AA-treated group, while those cells expressing NF160 decreased from 80% at 7 days to 10% at 28 days upon differentiation in N2 medium. However, in differentiation by RA/AA treatment system, there was a significant increase in proportion of neuron maturity (73%) at day 14 after N2 medium. TH#2/MB03 cells expressing TH are >90% when matured at the absence of either bDNF or TGF-$\alpha$. These results suggested that TH#2/MB03 cells could be differentiated in vitro into mature neurons by RA/AA.

  • PDF