Browse > Article
http://dx.doi.org/10.5713/ajas.2011.90593

Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain  

Yu, Shu-Min (Shanxi Branch of the National Centre of Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A & F University, Yangling Town, Xi'an City)
Yan, Xing-Rong (Shanxi Branch of the National Centre of Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A & F University, Yangling Town, Xi'an City)
Chen, Dong-Mei (Shanxi Branch of the National Centre of Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A & F University, Yangling Town, Xi'an City)
Cheng, Xiang (Shanxi Branch of the National Centre of Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A & F University, Yangling Town, Xi'an City)
Dou, Zhong-Ying (Shanxi Branch of the National Centre of Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest A & F University, Yangling Town, Xi'an City)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.1, 2011 , pp. 37-44 More about this Journal
Abstract
Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.
Keywords
Mouse; Parthenogenetical Activation; Parthenogenetic Embryonic Stem (pES) Cells; Kunming Mouse (Mus musculus Km); Genetic Background;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Tielens, S., B. Verhasselt, J. Liu, M. Dhont, J. Van Der Elst and M. Cornelissen. 2006. Generation of embryonic stem cell lines from mouse blastocysts developed in vivo and in vitro: relation to Oct-4 expression. Reproduction 132(1):59-66.   DOI   ScienceOn
2 Nagy A., M. Gertsensten, K. Vintersten and R. Behringer. 2003. Manipulating the mouse embryo: a laboratatory manual (Third Edition). New York, Cold Spring Harbor Lab Press.
3 Newman-Smith, E. D. and Z. Werb. 1995. Stem cell defects in parthenogenetic peri-implantation embryos. Development 121: 2069-2077.
4 Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer and A. Smith. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379-391.   DOI   ScienceOn
5 Park, J. I., I. Yoshida, T. Tada, N. Takagi, Y. Takahashi and H. Kanagawa. 1998. Differentiative potential of a mouse parthenogenetic embryonic stem cell line revealed by embryoid body formation in vitro. Jpn. J. Vet. Res. 46(1):19-28.
6 Revazova, E. S., N. A. Turovets, O. D. Kochetkova, L. B. Kindarova, L. N. Kuzmichev, J. D. Janus and M. V. Pryzhkova. 2007. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432-449.   DOI   ScienceOn
7 Sritanaudomchai, H., K. Pavasuthipaisit, Y. Kitiyanant, P. Kupradinun, S. Mitalipov and T. Kusamran. 2007. Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol. Reprod. Dev. 74(10):1295-1302.   DOI   ScienceOn
8 Suzuki, O., J. Matsuda, K. Takano, Y. Yamamoto, T. Asano, M. Naiki and M. Kusanagi. 1999. Effect of genetic background on establishment of mouse embryonic stem cells. Exp. Anim. 48(3):213-216.   DOI   ScienceOn
9 Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.   DOI   ScienceOn
10 Kaufman, M. H., E. J. Robertson, A. H. Handyside and M. J. Evans. 1983. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73:249-261.
11 Kim, K., P. Lerou, A. Yabuuchi, C. Lengerke, K. Ng, J. West, A. Kirby, M. J. Daly and G. Q. Daley. 2007. Histocompatible embryonic stem cells by parthenogenesis. Science 315:482-486.   DOI   ScienceOn
12 Kress, C., S. Vandormael-Pournin, P. Baldacci, M. Cohen- Tannoudji and C. Babinet. 1998. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation. Mamm. Genome 9(12): 998-1001.   DOI
13 Levine, A. J. and A. H. Brivanlou. 2005. GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Developemnt 133(2):209-216.
14 Lin, H., J. Lei, D. Wininger, M. T. Nguyen, R. Khanna, C. Hartmann, W. L. Yan and S. C. Huang. 2003. Multilineage potential of homozygous stem cells derived from Metaphase II oocytes. Stem Cells 21(2):152-161.   DOI   ScienceOn
15 Lin, G., Q. OuYang, X. Zhou, Y. Gu, D. Yuan, W. Li, G. Liu, T. Liu and G. Lu. 2007. A highly homozygous and parthenogenetic human stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 17(12): 999-1007.   DOI   ScienceOn
16 Mai, Q., Y. Yu, T. Li, L. Wang, M. J. Chen, S. Z. Huang, C. Zhou and Q. Zhou. 2007. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 17:1008-1019.   DOI   ScienceOn
17 Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631-642.   DOI   ScienceOn
18 Drukker, M. 2008. Recent advancements towards the derivation of immune-compatible patient- specific human embryonic stem cell lines. Semin. Immunol. 20:123-129.   DOI   ScienceOn
19 Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643-655.   DOI   ScienceOn
20 Cibelli, J. B., K. A. Grant, K. B. Chapman, K. Cunniff, T. Worst, H. L. Green, S. J. Walker, P. H. Gutin, L. Vilner, V. Tabar, T. Dominko, J. Kane, P. J. Wettstein, R. P. Lanza, L. Studer, K. E. Vrana and M. D. West. 2002. Parthenogenetic stem cells in nonhuman primates. Science 295:819-824.   DOI   ScienceOn
21 Evans, M. J. and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156.   DOI   ScienceOn
22 Fang, Z. F., H. Gai, Y. Z. Huang, S. G. Li, X. J. Chen, J. J. Shi, L. Wu, A. Liu, P. Xu and H. Z. Sheng. 2006. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp. Cell Res. 312(18): 3669-3682.   DOI   ScienceOn
23 Jagerbauer, E. M., A. Fraser, E. W. Herbst, R. Kothary and R. Fundele. 1992. Parthenogenetic stem cells in postnatal mouse chimeras. Development 116(1):95-102.
24 Jiang, H., B. Sun, W. Wang, Z. Zhang, F. Gao, G. Shi, B. Cui, X. Kong, Z. He, X. Ding, Y. Kuang, J. Fei, Y. J. Sun, Y. Feng and Y. Jin. 2007. Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res. 17(9): 792-803.   DOI   ScienceOn
25 Brook, F. A., E. P. Evans, C. J. Lord, P. A. Lyons, D. B. Rainbow, S. K. Howlett, L. S. Wicker, J. A. Todd and R. L. Gardner. 2003. The derivation of highly germline-competent embryonic stem cells containing NOD-derived genome. Diabetes 52(1): 205-208.   DOI   ScienceOn
26 Kawase, E., H. Suemori, N. Takahashi, K. Okazaki, K. Hashimoto and N. Nakatsuji. 1994. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38(2): 385-390
27 Allen, N. D., S. C. Barton, K. Hilton, M. L. Norris and M. A. Surani. 1994. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120:1473-1482.
28 Baharvand, H. and K. I. Matthaei. 2004. Culture condition difference for estabilishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains. In Vitro Cell. Dev. Biol. AN., 40:76-81.   DOI   ScienceOn
29 Buehr, M. and A. Smith. 2003. Genesis of embryonic stem cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358:1397-1402.   DOI   ScienceOn
30 Buehr, M., J. Nichols, F. Stenhouse, P. Mountford, C. J. Greenhalgh, S. Kantachuvesiri, G. Brooker, J. Mullins and A. G. Smith. 2003. Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol. Reprod. 68(1):222-229.