DOI QR코드

DOI QR Code

H19 Gene Is Epigenetically Stable in Mouse Multipotent Germline Stem Cells

  • Oh, Shin Hye (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Jung, Yoon Hee (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Gupta, Mukesh Kumar (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Uhm, Sang Jun (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Lee, Hoon Taek (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
  • Received : 2008.12.10
  • Accepted : 2009.04.21
  • Published : 2009.06.30

Abstract

Testis-derived germline stem (GS) cells can undergo reprogramming to acquire multipotency when cultured under appropriate culture conditions. These multipotent GS (mGS) cells have been known to differ from GS cells in their DNA methylation pattern. In this study, we examined the DNA methylation status of the H19 imprinting control region (ICR) in multipotent adult germline stem (maGS) cells to elucidate how epigenetic imprints are altered by culture conditions. DNA methylation was analyzed by bisulfite sequencing PCR of established maGS cells cultured in the presence of glial cell line-derived neurotrophic factor (GDNF) alone or both GDNF and leukemia inhibitory factor (LIF). The results showed that the H19 ICR in maGS cells of both groups was hypermethylated and had an androgenetic pattern similar to that of GS cells. In line with these data, the relative abundance of the Igf2 mRNA transcript was two-fold higher and that of H19 was three fold lower than in control embryonic stem cells. The androgenetic DNA methylation pattern of the H19 ICR was maintained even after 54 passages. Furthermore, differentiating maGS cells from retinoic acid-treated embryoid bodies maintained the androgenetic imprinting pattern of the H19 ICR. Taken together these data suggest that our maGS cells are epigenetically stable for the H19 gene during in vitro modifications. Further studies on the epigenetic regulation and chromatin structure of maGS cells are therefore necessary before their full potential can be utilized in regenerative medicine.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Andollo, N., Boyano, M.D., Andrade, R., and Ar$\acute{e}$chaga, J.M. (2006). Epigenetic regulation of the imprinted U2af1-rs1 gene during retinoic acid-induced differeentiation of embryonic stem cells. Dev. Growth Differ. 48, 349-360 https://doi.org/10.1111/j.1440-169X.2006.00873.x
  2. Bain, G., Ray, W.J., Yao, M., and Gottlieb, D.I. (1996). Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem. Biophys. Res. Commun.223, 691-694 https://doi.org/10.1006/bbrc.1996.0957
  3. Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The mammalian epigenome. Cell 128, 669-681 https://doi.org/10.1016/j.cell.2007.01.033
  4. Carr, M.S., Yevtodiyenko, A., Schmidt, C.L., and Schmidt, J.V. (2007). Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 89, 280-290 https://doi.org/10.1016/j.ygeno.2006.10.005
  5. Chang, G., Liu, S., Wang, F., Zhang, Y., Kou, Z., Chen, D., and Gao, S. (2009). Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells. Genomics 93, 112-119 https://doi.org/10.1016/j.ygeno.2008.09.011
  6. Dean, W., Bowden, L., Aitchison, A., Klose, J., Moore, T., Meneses, J.J., Reik, W., and Feil, R. (1998). Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125, 2273-2282
  7. Deng, T., Kuang, Y., Zhang, D., Wang, L., Sun, R., Xu, G., Wang, Z., and Fei, J. (2007). Disruption of imprinting and aberrant embryo development in completely inbred embryonic stem cellderived mice. Dev. Growth Differ. 49, 603-610 https://doi.org/10.1111/j.1440-169X.2007.00955.x
  8. Doherty, A.S., Mann, M.R., Tremblay, K.D., Bartolomei, M.S., and Schultz, R.M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526-1535 https://doi.org/10.1095/biolreprod62.6.1526
  9. Eckardt, S., Leu, N.A., Bradley, H.L., Kato, H., Bunting, K.D., and McLaughlin, K.J. (2007). Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes Dev. 21, 409-419 https://doi.org/10.1101/gad.1524207
  10. Grandjean, V., O'Neill, L., Sado, T., Turner, B., and Ferguson-Smith, A. (2001). Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2- H19 domain. FEBS Lett. 488, 165-169 https://doi.org/10.1016/S0014-5793(00)02349-8
  11. Guan, K., Nayernia, K., Maier, L.S., Wagner, S., Dressel, R., Lee, J.H., Nolte, J., Wolf, F., Li, M., Engel, W.I=et alK (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199-1203 https://doi.org/10.1038/nature04697
  12. Guan, K., Wagner, S., Uns$\ddot{o}$ld, B., Maier, L.S., Kaiser, D., Hemmerlein, B., Nayernia, K., Engel, W., and Hasenfuss, G. (2007). Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ. Res.100, 1615-1625 https://doi.org/10.1161/01.RES.0000269182.22798.d9
  13. Han, D.W., Im, Y.B., Do, J.T., Gupta, M.K., Uhm, S.J., Kim, J.H., Sch$\ddot{o}$ler, H.R., and Lee, H.T. (2008). Methylation status of putative differentially methylated regions of porcine IGF2 and H19. Mol. Reprod. Dev.75, 777-784 https://doi.org/10.1002/mrd.20802
  14. Hernandez, L., Kozlov, S., Piras, G., and Stewart, C.L. (2003). Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl. Acad. Sci. USA 100, 13344-13349 https://doi.org/10.1073/pnas.2234026100
  15. Horii, T., Kimura, M., Morita, S., Nagao, Y., and Hatada, I. (2008). Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 26, 79-88 https://doi.org/10.1634/stemcells.2006-0635
  16. Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, W.M., 3rd, Biniszkiewicz, D., Yanagimachi, R., and Jaenisch, R. (2001). Epigenetic instability in ES cells and cloned mice. Science 293, 95-97 https://doi.org/10.1126/science.1061402
  17. Izadyar, F., Pau, F., Marh, J., Slepko, N., Wang, T., Gonzalez, R., Ramos, T., Howerton, K., Sayre, C., and Silva, F. (2008). Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135, 771-784 https://doi.org/10.1530/REP-07-0479
  18. Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S., Kato, T., Kazuki, Y., Toyokuni, S., et al (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 1001, 1001-1012 https://doi.org/10.1016/j.cell.2004.11.011
  19. Kanatsu-Shinohara, M., Ogonuki, N., Iwano, T., Lee, J., Kazuki, Y., Inoue, K., Miki, H., Takehashi, M., Toyokuni, S., Shinkai, Y.I., et alK (2005). Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132, 4155-4163 https://doi.org/10.1242/dev.02004
  20. Khosla, S., Dean, W., Brown, D., Reik, W., and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918-926 https://doi.org/10.1095/biolreprod64.3.918
  21. Kubota, H., Avarbock, M.R., and Brinster, R.L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101, 16489-16494 https://doi.org/10.1073/pnas.0407063101
  22. Lee, J., Kanatsu-Shinohara, M., Ogonuki, N., Miki, H., Inoue, K., Morimoto, T., Morimoto, H., Ogura, A., and Shinohara, T. (2009). Heritable imprinting defect caused by epigenetic abnormalities in mouse spermatogonial stem cells. Biol. Reprod.80, 518-527 https://doi.org/10.1095/biolreprod.108.072330
  23. Lucifero, D., Mertineit, C., Clarke, H.J., Bestor, T.H., and Trasler, J.M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79, 530-538 https://doi.org/10.1006/geno.2002.6732
  24. Murphy, S.K., Wylie, A.A., and Jirtle, R.L. (2001). Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics 71, 110-117 https://doi.org/10.1006/geno.2000.6419
  25. Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M.I, et alK (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64-71 https://doi.org/10.1038/ncb1519
  26. Okita, K., and Yamanaka, S. (2006). Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr. Stem Cell Res. Ther. 1, 103-111 https://doi.org/10.2174/157488806775269061
  27. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425-432 https://doi.org/10.1038/nature05918
  28. Reik, W., and Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21-32 https://doi.org/10.1038/35047554
  29. Reik, W., Constancia, M., Dean, W., Davies, K., Bowden, L., Murrell, A., Feil, R., Walter, J., and Kelsey, G. (2000). Igf2 imprinting in development and disease. Int. J. Dev. Biol. 44, 145-150
  30. Rugg-Gunn, P.J., Ferguson-Smith, A.C., and Pedersen, R.A. (2005). Epigenetic status of human embryonic stem cells. Nat. Genet. 37, 585-587 https://doi.org/10.1038/ng1556
  31. Sasaki, H., Ishihara, K., and Kato, R. (2000). Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and longdistance gene regulation. J. Biochem. 127, 711-715 https://doi.org/10.1093/oxfordjournals.jbchem.a022661
  32. Shovlin, T.C., Durcova-Hills, G., Surani, A., and McLaren, A. (2008). Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev. Biol.313, 674-681 https://doi.org/10.1016/j.ydbio.2007.11.007
  33. Thorvaldsen, J.L., Duran, K.L., and Bartolomei, M.S. (1998). Deletion of the $H_1_9$ differentially methylated domain results in loss of imprinted expression of $H_1_9$and $Igf_2$. Genes Dev. 12, 3693-3702 https://doi.org/10.1101/gad.12.23.3693
  34. Yamagata, K., Yamazaki, T., Miki, H., Ogonuki, N., Inoue, K., Ogura, A., and Baba, T. (2007). Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Dev. Biol. 312, 419-426 https://doi.org/10.1016/j.ydbio.2007.09.041
  35. Yang, Y., Hu, J.F., Ulaner, G.A., Li, T., Yao, X., Vu, T.H., and Hoffman, A.R. (2003). Epigenetic regulation of Igf2/H19 imprinting at CTCF insulator binding sites. J. Cell Biochem. 90, 1038-1055 https://doi.org/10.1002/jcb.10684
  36. Zhu, J.Q., Liu, J.H., Liang, X.W., Xu, B.Z., Hou, Y., Zhao, X.X., and Sun, Q.Y. (2008). Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts. Mol. Cells 25, 211-215
  37. Zovoilis, A., Nolte, J., Drusenheimer, N., Zechner, U., Hada, H., Guan, K., Hasenfuss, G., Nayernia, K., and Engel, W. (2008). Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol. Hum. Reprod. 14, 521-529 https://doi.org/10.1093/molehr/gan044

Cited by

  1. Identification of an Intermediate State as Spermatogonial Stem Cells Reprogram to Multipotent Cells vol.29, pp.5, 2009, https://doi.org/10.1007/s10059-010-0064-5
  2. Generation of Functional Hepatocytes From Mouse Germ Line Cell-Derived Pluripotent Stem Cells In Vitro vol.19, pp.8, 2010, https://doi.org/10.1089/scd.2009.0496
  3. MicroRNA signature in testes-derived male germ-line stem cells vol.16, pp.11, 2009, https://doi.org/10.1093/molehr/gaq058
  4. Differential Genomic Imprinting and Expression of Imprinted microRNAs in Testes-Derived Male Germ-Line Stem Cells in Mouse vol.6, pp.7, 2009, https://doi.org/10.1371/journal.pone.0022481
  5. Epigenetic up-regulation of leukemia inhibitory factor (LIF) gene during the progression to breast cancer vol.31, pp.2, 2009, https://doi.org/10.1007/s10059-011-0020-z
  6. Restoring Fertility in Sterile Childhood Cancer Survivors by Autotransplanting Spermatogonial Stem Cells: Are We There Yet? vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/903142