• Title/Summary/Keyword: embedded testing

Search Result 411, Processing Time 0.03 seconds

Efficient Implementation of the MQTT Protocol for Embedded Systems

  • Deschambault, Olivier;Gherbi, Abdelouahed;Legare, Christian
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.26-39
    • /
    • 2017
  • The need for embedded devices to be able to exchange information with each other and with data centers is essential for the advent of the Internet of Things (IoT). Several existing communication protocols are designed for small devices including the message-queue telemetry transport (MQTT) protocol or the constrained application protocol (CoAP). However, most of the existing implementations are convenient for computers or smart phones but do not consider the strict constraints and limitations with regard resource usage, portability and configuration. In this paper, we report on an industrial research and development project which focuses on the design, implementation, testing and deployment of a MQTT module. The goal of this project is to develop this module for platforms having minimal RAM, flash code memory and processing power. This software module should be fully compliant with the MQTT protocol specification, portable, and inter-operable with other software stacks. In this paper, we present our approach based on abstraction layers to the design of the MQTT module and we discuss the compliance of the implementation with the requirements set including the MISRA static analysis requirements.

Development of A Single-Chip Active Noise Controller And Its Evaluation System (단일칩 능동 소음 제어기 및 평가 시스템 개발)

  • Chung, Ikjoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.241-246
    • /
    • 2021
  • In this paper, we developed the evaluation system for the active noise control so that the algorithms can be easily evaluated in real-time on the system. We implemented the active noise controller based on a single-chip with only additional op-amps for signal conditioning because the TMS320C280049 MCU includes almost all necessary peripherals for the active noise controller. Due to the difficulty in testing algorithms on embedded-type hardware unlike in computer simulation, we also developed GUI-based evaluation software which makes it simple to test algorithms on the hardware. Using the GUI software, we can optimize the parameters of the algorithms with ease in a specific noise environment because the parameters can be adjusted in real-time when the algorithm is running on the hardware.

Stepwise test case generation for embedded s/w (임베디드 소프트웨어 테스트 케이스 단계적 생성)

  • Jang, S.H.;Jang, J.S.;Lee, S.Y.;Ko, B.G.;Choi, K.H.;Park, S.K.;Jung, K.H.;Lee, M.H.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.603-606
    • /
    • 2004
  • Automatic test case generation for testing an embedded software is considered. Existing tools for test case generation such as finite state machine or mutant test usually adopt top down approach and depend upon graphical transition and decision table, which makes it difficult to find out where the bugs exist. Also it is hard to describe the special features of embedded systems such as concurrent execution of individual components. Most of embedded systems interacts with the real world, receiving signals through sensors or switches and sending output signals to actuators that somehow manipulate the environment. Embedded software controls the entire system based on the logics such as interpreting the sensor inputs and making the actuators to start or stop their intended operation. This study proposes an automatic test case generation procedure that tests the system starting from the control logics of sensors, switches and actuators and then their concurrent execution controls, and finally the entire system operation. Such a stepwise approach makes it easy to generate test cases to tell where the bugs of embedded software exist.

  • PDF

Maximum Stack Memory Usage Estimation Through Target Binary File Analysis in Microcontroller Environment (마이크로컨트롤러 환경에서 타깃 바이너리 파일 분석을 통한 최대 스택 메모리 사용량 예측 기법)

  • Choi, Kiho;Kim, Seongseop;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.159-167
    • /
    • 2017
  • Software safety is a key issue in embedded system of automotive and aviation industries. Various software testing approaches have been proposed to achieve software safety like ISO26262 Part 6 in automotive environment. In spite of one of the classic and basic approaches, stack memory is hard to estimating exactly because of uncertainty of target code generated by compiler and complex nested interrupt. In this paper, we propose an approach of analyzing the maximum stack usage statically from target binary code rather than the source code that also allows nested interrupts for determining the exact stack memory size. In our approach, determining maximum stack usage is divided into three steps: data extraction from ELF file, construction of call graph, and consideration of nested interrupt configurations for determining required stack size from the ISR (Interrupt Service Routine). Experimental results of the estimation of the maximum stack usage shows proposed approach is helpful for optimizing stack memory size and checking the stability of the program in the embedded system that especially supports nested interrupts.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

Development of Artificial Intelligence Processing Embedded System for Rescue Requester search (소방관의 요구조자 탐색을 위한 인공지능 처리 임베디드 시스템 개발)

  • La, Jong-Pil;Park, Hyun Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1612-1617
    • /
    • 2020
  • Recently, research to reduce the accident rate by actively adopting artificial intelligence technology in the field of disaster safety technology is spreading. In particular, it is important to quickly search the Rescue Requester in order to effectively perform rescue activities at the disaster site. However, it is difficult to search for Rescue Requester due to the nature of the disaster environment. In this paper, We intend to develop an artificial intelligence system that can be operated in a smart helmet for firefighters to search for a rescue requester. To this end, the optimal SoC was selected and developed as an embedded system, and by testing a general-purpose artificial intelligence S/W, the embedded system for future smart helmet research was verified to be suitable as an artificial intelligence S/W operating platform.

Fault Injection Based Indirect Interaction Testing Approach for Embedded System (임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법)

  • Hossain, Muhammad Iqbal;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.419-428
    • /
    • 2017
  • In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction faults between the modules are one of the major cause of critical software failure. Therefore, interaction testing is an essential phase for reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault injection technique to evaluate the feasibility and effectiveness of our approach.

An Efficient BIST for Mixed Signal Circuits (혼성 신호 회로에 대한 효과적인 BIST)

  • Bang, Geum-Hwan;Gang, Seong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.24-33
    • /
    • 2002
  • For mixed signal circuits that integrate both analog and digital blocks onto the same chip, testing the mixed circuits has become the bottleneck. Since most of mixed signal circuits are functionally tested, mixed signal testing needs expensive automatic test equipments for test input generation and response acquisition. In this paper, a new efficient BIST is developed which can be used for mixed signal circuits. In the new BIST, only faults on embedded resistances, capacitances and its combinations are considered. To guarantee the quality of chips, the new BIST performs both voltage testing and phase testing. Using these two testing modes, all the faults are detected. In order to support this technique, the voltage detector and the phase detector are developed. Experimental results prove the efficiency of the new BIST.