DOI QR코드

DOI QR Code

Development of Artificial Intelligence Processing Embedded System for Rescue Requester search

소방관의 요구조자 탐색을 위한 인공지능 처리 임베디드 시스템 개발

  • Received : 2020.10.26
  • Accepted : 2020.11.02
  • Published : 2020.12.31

Abstract

Recently, research to reduce the accident rate by actively adopting artificial intelligence technology in the field of disaster safety technology is spreading. In particular, it is important to quickly search the Rescue Requester in order to effectively perform rescue activities at the disaster site. However, it is difficult to search for Rescue Requester due to the nature of the disaster environment. In this paper, We intend to develop an artificial intelligence system that can be operated in a smart helmet for firefighters to search for a rescue requester. To this end, the optimal SoC was selected and developed as an embedded system, and by testing a general-purpose artificial intelligence S/W, the embedded system for future smart helmet research was verified to be suitable as an artificial intelligence S/W operating platform.

최근 재난 안전 기술 분야에 인공지능 기술을 적극적으로 받아들여 재해율을 감소시키고자 하는 연구가 확산되고 있다. 특히 재난 현장에서 구조 활동을 효과적으로 수행하기 위해서는 요구조자를 신속하게 탐색하는 것이 중요하지만 재난 환경의 특성상 요구조자를 탐색하는 것이 어렵다. 본 논문에서는 요구조자 탐색을 위한 소방관용 스마트 헬멧에서 동작 가능한 인공지능 시스템을 개발하고자 한다. 이를 위해 최적의 SoC를 선정하고 이를 임베디드 시스템으로 개발하였으며 범용적인 인공지능 S/W를 시험 동작함으로써 향후 스마트 헬멧 연구를 위한 임베디드 시스템이 인공지능 S/W 운용 플랫폼으로 적합함을 검증하였다.

Keywords

References

  1. A. Restas, "Drone applications for supporting disaster management," World Journal of Engineering and Technology, vol. 3, no. 03, pp. 316, 2015. https://doi.org/10.4236/wjet.2015.33C047
  2. M. Hassanalian and A. Abdelkefi, "Classifications, applications, and design challenges of drones: A review," Progress in Aerospace Sciences, vol. 91, pp. 99-131. 2017. https://doi.org/10.1016/j.paerosci.2017.04.003
  3. H. J Park, K. Y. Lee, M. K, Shin, and J. Y. Hwang, "Research on EO / IR Image Synthesis Using Embedded-Based Deep Learning," Annual conference on Information & Communication Engineering, vol. 23, no. 2, pp. 611-612, 2019.
  4. S. I. Hassan, L. M. Dang, S. H. Im, K. B. Min, J. Y. Nam, and H. J. Moon, "Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 3, pp. 451-457, 2018 https://doi.org/10.6109/jkiice.2018.22.3.451
  5. S. Han, H. Mao, and W. J. Dally, "Deep Compression: Compressing Deep Neural Networks with pruning, trained quantization and Huffman coding," In Proc. Computer Vision and Pattern Recognition (CVPR), Jun. 2015.
  6. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Leraning for Image Recognition," In Proc. Computer Vision and Pattern Recognition (CVPR), Jun. 2016.
  7. A. Howard, M. Zhu, B. Chen, D. Kalenichenoko, W. Wang, T. Weyand, M. Andreetto, and H.Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," In Proc. Computer Vision and Pattern Recognition (CVPR), Jul. 2017.
  8. X. Zhang, X. Zhou, M. Lin, and J. Sun, "ShuffleNet: An Exteremey Efficient Convolutional Neural Network for Mobile Devices," In Proc. Computer Vision and Patter Recognition (CVPR), Jun. 2018.
  9. H. C. Moon, H. Y. Lee, and J. G. Kim, "Compression and Performance Evaluation of CNN Models on Embedded Board," JOURNAL OF BROADCAST ENGINEERING, vol. 25, no. 2, pp.200-207, 2020. https://doi.org/10.5909/JBE.2020.25.2.200
  10. S. K. Park, S. S. Park, and K. S. Chung, "Analysis of Power Consumption for AI based speech recognition on Embed system," Proceedings of Symposium of the Korean Institute of communications and Information Sciences, pp.1363-1364, 2018.
  11. J. S. Kwon and D. J. Park, "Acceleration of ECC Computation for Robust Massive Data Reception under GPU-based Embedded System," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no 7, pp. 956-962, 2020.