45 =0l

=3 TH= O g o

KIPS Tr. Software and Data Eng. AHICI= AIAR Q]

Vol.6, No.9 pp.419~428 pISSN: 2287-5905

Fault Injection Based Indirect Interaction Testing Approach
for Embedded System

Muhammad lgbal Hossain™ - Woo Jin Lee™

ABSTRACT

T8t 2 MR HAY 7Y

419

https://doi.org/10.3745/KTSDE.2017.6.9.419

In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules
may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the
resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction

faults between the modules are one of the major cause of critical

software failure. Therefore, interaction testing is an essential phase for

reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction
faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is
made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are
based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by
existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect
interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault

injection technique to evaluate the feasihility and effectiveness of our approach.

Keywords : Indirect Interaction, Interaction Testing, Test Case Generation, Fault Injection, Embedded System

Qe = A 2me] AT FY

Muhammad labal

714k 7K

Hossain" - o] < &

2 ¢

PulE = Alzgel e RELTe] FuageR ol E Fa Wtk o 47k A i HolHE dushd Axgle] HY oRE
R olvh FuAge FEEE asse EEte] dEWwAs wav A de gl Wit e gl Vv 9%e v
A AL BB MY = AR AL Ahg] wEY REghe] FuAs SRvE AZeh AxES] Aue] dgle] HYk dr FEAE H
29 GAdA e oled F3E54E 2FE AEdte] Aoy Ade H¥s R dvh mEe] A5Aee 44w AydeR dojd
o A FEAEE wES 44 352 Bl o FolAN, A HEAEE AY5E of9lel Pa vle[He] oS T vehdth o]
ATl E A3 Fdadgd @ o AF AdAE TAHA e D 45489 dvd oFE AEstua gk WA 45g Ay
< BAete] HEAg 2l At o8 VINer JEAE 2FE HEdE HAE Aol Y]l W Aokl vixtow A3 F
& 7S ol8ste] Alokd WNle] B84 % AEAS S43H

IIAE Y MEHE, 4SHE

1. Introduction

From complex safety critical systems like automobile,
medical system to home appliances, cellular phones even

0179 % AF(EH)9 Aoz gapddgtActe] Ads wo}
No. NRF-2017R1D1A3B04035880).

5 911 AROsa ARE S b

3] 9:jsojst AREAY ag

Manuscript Received : March 17, 2017

First Revision : June 12, 2017

Accepted : June 17, 2017

Corresponding Author : Woo Jin Lee(woojin@knu.ac.kr)

‘. R

ol AN > e
o2
e

*

HAE, HAE HOlA 4o, Hat

39 JlH, AHICIE AlAY

toothbrush is controlled by embedded software. So testing
embedded system became a serious concern in product
development life cycle. A study commissioned by the
National Institute of Standards and Technology found that
software errors cost the US economy $59.5 billion in
every year. The study estimated over one-third of that
amount, $22.2 billion, could be eliminated by improving
test techniques [1]. An embedded system is a combination
of processors, sensors, and actuators which have intensive
interaction with resources. Also, development procedure is



420 HEXMESe=2X/2ZER0 3 HI0IH St Mo H9=(2017. 9)

complex and changes to software interfaces and hardware
are common, which makes the testing challenging.
Embedded system comprises several modules and exchange
resource data by interacting among themselves. As a
result, any changes in resources by one module affects
the functionality of another module. Therefore, interaction
testing is an essential phase to reduce the interaction
faults and to minimize the risk. Interaction faults are
generated by the direct and indirect interaction between
modules where the direct interaction is made through
interfaces and the indirect interaction is made underneath
of interface in which data dependence relationship with
resources may cause a different outcome. Therefore, it is
necessary to verify the correctness of each indirect
interaction.

Several investigations of aerospace problems show
critical software failures in aerospace missions are caused
by functional interactions among components and in-
complete specifications. Lutz examined 387 software
errors uncovered during integration and system testing of
the Voyager and Galileo spacecraft [2]. In the North
Eastern United States, one of the biggest power blackouts
in history happened on August 14, 2003. While the causes
of this blackout were nothing to do with a software bug,
it could have been averted. Two parts of a system were
competing over the same resource and could not resolve
the conflict, which indirectly caused the alarm system to
freeze and stop processing alerts [3]. In 2014, automobile
company Honda recalled 175,000 hybrid vehicles in Japan
for a software problem. A software glitch in engine control
module causes sudden acceleration in cruise control module
[4]. All possible direct interaction scenarios between
engine control and cruise control were tested but changes
of resources by engine control module indirectly affected
the cruise control unit resulting into an error. In all these
cases, problems can be avoided if we put more effort on
testing the indirect interaction between modules. In
high-risk sectors, embedded systems need to go through
a rigorous testing process. At first, each software module
is tested separately as a unit and then combined to
proceed for integration testing. The integration testing
has the goal of proving whether developed features work
together well enough for the software to submit for
system testing. When combining all modules together,
errors can emerge from their interactions. We still rely on
traditional black box testing or genetic algorithm based
approaches capable of finding particular faults caused by
direct interaction but faults emerged by indirect inter—
action are difficult to find due to the lack of standard
pattern and model.

In this paper, we propose a noble approach to generate an
interaction model and then investigate several kinds of
indirect interaction that causes errors through shared
resources, file, device etc. denoted as interacting variable
throughout this paper. The main contributions of this paper
are:

»  Generate an interaction model and categorize fault

type.

«  Specify abnormal indirect interaction pattern.

« Evaluate our approach through fault injection

techniques widely used to validate the testing model.

By fault injection technique, we like to show how
existing approaches incompetent to find the faults which
are generated by indirect interactions.

2. Related Works

There was a few work on integration testing of the
embedded system, which considers the internal behavior
of the system but lacks a standard model. Most of the
existing integration testing methods such as Genetic
algorithm method, coupling based method, decision table
method, variable strength array, verification pattern etc.
define test cases from software specifications and did not
consider internal execution paths of integrated modules
for detecting function interaction faults. Fault injection/
Mutation-based technique was used to evaluate a test
approach. Many researchers discussed several faults that
can be generated during integration testing but none of
them are related to indirect interaction faults. An
integration error occurs when an incorrect value is passed
through a unit connection in [5]. They illustrated how
incorrect values entering and exiting a unit call and
causes erroneous output. Here, only actual parameter,
global variable, and return value are considered. One of its
weakness is that it was a mutation operator based
technique and imposes a higher cost as every location in
the program where the global variable used/defined is a
potential location for mutation. This paper introduced an
improved, simple and easy technique of interface faults
insertion using Aspect] for Java component-based
applications [6]. The technique can ignore the entire
execution of an interface service, corrupting its input
values and returning a bogus return value. The faults are
focused on the interface that can be invoked in different
ways and would lead to different event executions. Also,
there is no control over when the fault should be
triggered because faults are triggered by the program



itself, whenever the program calls the interface services.
This work proposed a fault injection strategy to test the
interaction among components [7]. For that reason,
interface faults were introduced by corrupting input data
as well as interface output data. Even though almost
every researcher focused on interface information and
generate faults according to the input and output of the
module, erroneous or incomplete interface specifications
may lead to futile faults. We need special faults that occur
during interaction among modules, which could not be
found by analyzing the interface information.

A Coupling-based testing technique is proposed here
[8] and used Mistix program, a UNIX file system, as a
case study which does not have any call, stamp data/
control, or external coupling also it is unknown how the
technique will behave in the more complex system. 21
faults are inserted into Mistix, which does not reflect the
integration/interaction relationship of modules. This
survey paper in [9] identifies one of the major challenges
in integration testing in component-based software
engineering was identifying the dependencies. The author
investigates how to observe system’ s dynamic behavior
in component integration testing. Here components are
treated as a black box and observe their interrelationship
by statements, execution sequence, glued parameter etc.
Here, only basic interaction is observed and their method
cannot find the indirect interaction among components.

3. Indirect Interaction

Embedded system encompasses a broad range of
hardware and software system where the software
system is divided into several modules, which are
developed by several vendors or different developer team.
An interaction take place when two or more modules have
a calling relationship among them or while accessing
same resources by several modules. Although some
researcher uses the same term to classify feature inter-
action, human-computer interaction, interaction testing
etc. which are quite distinct from our work. For example,
the interaction testing focused on how components
interact each other by changing the combination of
components. Suppose there are four components, each
with three different values, resulting in 81 possible system
configurations. Each of the system tests must be run in
each of these 81 configurations in order to detect any
unexpected interaction faults that will occur between
components [10]. A feature interaction is a situation in
which two or more features exhibit unexpected behavior

HICI= Aol Z2g = 78 1Y 4548 HAE 718 421

ita}

that does not occur when the features are used in
isolation. Several approaches can be used to implement
features cohesively in order to be able to compose them in
different combinations [11].

According to the interaction relation, we divide them
into direct and indirect interaction. Direct interaction is
the explicit call relation between modules where callee
module provides all input, output, and other reference
information to the caller module. On the other hand, in
indirect interaction, reference or resource sharing infor-
mation is not present in module interface but accessed
inside the body of the module where possible errors can
occur. For example, in the embedded system shared
variable, file, external device etc. are used extensively
inside a module where caller module has no information
about those. As a result, there creates an indirect
interaction between two modules which access that
particular resource or reference separately. Any change or
error in that resource affects all the accessing modules
and may open a path for unauthorized access to the
resources. The main difference between integration testing
and interaction testing is that in integration testing, data
transaction is visible such as parameter (variable, file,
memory) return value etc. but in interaction testing, data
transaction in not visible from the abstract viewpoint of
the system.

3.1 Formal Model for Indirect Interaction

The interaction between modules is done by clearly
defined and documented interface through a parameter or
return value and most of the existing works focused on
faulty message/data passing through modules. The
functional interface contains the necessary information to
interact with another module. Most of the time interfaces
are not well documented and only contain direct
interaction information, not an indirect one. Finding
indirect interaction is a complicated task because of lack
of standard pattern and model. An indirect interaction
visualized as the exchange of resources among modules,
and resources usually shared between modules indirectly
through files, shared variables, I/O devices, where any
changes to a resource by one module may affect another
module. We represent hoth direct and indirect interaction
using an interaction model generated by extending call
graph in Fig. 1.

An indirect interaction can be described as a hidden
dependency between two modules through several kinds
of resources where any change in one resource by a
module affects the behavior of another module. At first, a



422 HEXMEE=2X/AZER0 3 HI0IH St Mo M9z (2017. 9)

<<pareys>>

Module A Module C

~~~SDas N

<<I[LI>>

Module F

--------

I:l Module

s Call relation
Indirect interaction

S Shared variable, File
< > ’
resource=> /O device

~o ———

Fig. 1. Interaction Model Representation

call graph is generated automatically using the static
analyzing tool and then find the indirect interaction
between modules. Fig. 1 represents module A and module
B have a call relation, module B, and module C have an
indirect interaction by the shared variable, module E and
module F have indirect interaction through a file and so
on. The directed edges represent the calling sequences of
the modules. The interaction model is first introduced in
our prior work which uses data flow which is used for
testing embedded system [12]. A formal definition of
indirect interaction is given below.

Definition 1: Interaction model

Interaction model is represented as G = (V, E)
comprising finite set of modules, called nodes V and a set
of interactions, called edges E, where E € V X V. Solid
edges represent call relation and dashed edges represent
indirect interaction where indirect interaction is the set of
{Shared variable, File and Device} and directed edges
represent the calling sequences of V.

3.2 Abnormal Scenarios by Indirect Interaction

We have identified three basic types of interactions,
which are designated as test adequacy criteria, causes
indirect interaction (IDI) error. Each of the types is
described in details here.

Case I: Indirect Interaction by Shared Variable

In an embedded system, especially in the interrupt
service routine (ISR), memory management unit (MMU),
task management unit (TMU) etc. use shared variable to
communicate among them and related modules. Shared
variable makes data available from one module to another
or among multiple processes, but has no call relation. It is
very difficult to identify this interaction because shared
data information is not present in module declaration. It
can easily be defined and used in several modules. Any

error or change of shared variables in one module affects
another module. Therefore, it is essential to trace shared
variables and confirm their correctness. The value of a
shared variable while exiting the first module and after
entering the second module need to compare to avoid
value or type mismatch. It is done to make sure that these
is no intermediate modification of the value. We use data
flow based testing technique to find all definition use
information of a shared variable and generated test paths.
Any faults in data flow will be resolved by it.

decision_algo |———>| check_and_set_dnu |

serivce_cntr

dispatch_pending_elv |<

Fig. 2. Indirect Interaction by Shared Variable

For example, Fig. 2 shows the shared variable in elevator
system where service_cntr is a shared variable defined
and used in check_and_set dnu and dispatch_pending_elv
modules.

Case II: Indirect Interaction by File

Many embedded systems have a block of non-volatile
RAM of which the kernel can maintain no memory page
descriptor to mount a read/write filesystem. In addition,
some embedded OSs provide memory management support
for a temporary or permanent file system storage scheme.
Usually, file is used to get input into a program or to
display/store data from a program. MMU processes a file
for temporal/permanent storage of data, which can be
read, write or append by several modules. A module can
open a file anywhere in its body and perform required
actions without passing file information through the
parameter of a module interface. Therefore, the tester
does not test how files processes inside modules. However,



it is very important to test how the files are processing or
whether the files are performing according to speci-
fication. While interacting, it is needed to test whether
two modules follow that same file content structure or
not. For example, a file may contain an integer value
instead of a floating number. So, while reading an integer
value from a file, although the file contains a float value,
produces an error. There can be cases where the file
system is empty or required file is not present in a
directory. For this reason, these abnormal cases during
interaction should be tested.

output.c

Fig. 3. Indirect Interaction by File

For example, Fig. 3 represents indirect interaction using
the file in a project called “simulating a preprocessor
using file,” Here dataStr.c file is read in output module
and write in comment module.

Case III: Indirect Interaction by I/O Device

Embedded system contains extensive application
running on different devices and these are used to receive
data into a program or to transmit output data from a
program. For example, in microwave oven system, the
door sensor and heating elements interact with its
software system and execute according to their operations.
This device corresponds to a real world physical object
that interacts with the system via sensors and actuator. A
module can enable any sensors and actuator anywhere in
its body and perform required actions. It is not needed to
pass device information through a parameter. Therefore,
the tester does not test how devices process inside
modules. However, it is very important to test how the
devices are being processed or whether the devices are
performing according to specification. There can be a
wrong state, timing failure, fault handling etc. problems
while a device, which may lead to critical error, does the

interaction.

i Level sensor

controller

Fig. 4. Indirect Interaction by Device

HICI= AlAEol 28 = V|8 21 4588 HAE 718 423

ita}

For example, Fig. 4 represents indirect interaction using
the level sensor in a water level monitoring system. Here,
level sensor continuously read water level to start/stop the

motor and in particular level, it triggers an alarm.

4. Proposed indirect interaction based approach

Our proposed indirect interaction approach comprises
two phases. In the first phase, we find interacting
variables between two modules by generating interaction
model and define different faults by the interaction of
resources. In the second phase, we use fault injection
technique to verify the correctness of each indirect

interaction.

4.1 Interaction Model Generation

At first, using source insight tools [13], the source code
is parsed and maintained in a database to store symbolic
information dynamically to generate a call graph. A list of
modules and arcs ie. caller-callee relationship between
two modules are acquired by generating a call graph.
Extraction of the interacting variable is a manual process,
which can be done by developer or tester by analyzing
source code. Many techniques use interface information to
find the interaction, which can be erroneous or incomplete,
and several works have already done testing this kind of
interaction. Our focus is on the resources accessed by two
modules inside their body, which are not present in
interface information. Overview of finding interacting

variable is shown in Fig. 5.

Source code [ Parsed and symbolized Call graph generation

Static analysis — Interacting variables Interaction model

Fig. 5. Overview of Finding Interacting Variable

4.2 Fault Injection Technique

Fault injection technique is described as intentional
injection of a failure condition into a running system
during a test activity, to determine whether the system
reacts well to off-nominal or exceptional conditions [14]
[15]. Faults that injected into the system represent the
actual faults that occur within the system. A tester

creates a list of faults and injects those faults into the



424 HEXMES=2X/2ZER0 3 HI0IH St Mo M9z (2017. 9)

Interaction type

Interaction
model

Interacting module

Injection
point

Fault list

Result
analysis

Fig. 6. Overview of Fault Injection Technique

system. The final report sent to the developer to correct
the code so that faults can be handled correctly. To inject
fault in the source code, we may modify the code, add
new code or delete part of the code. Fault injection

process is divided into two parts.

1) Pre-injection analysis

The pre-injection analysis involves creating the fault
according to test criteria. Test criteria is based on the
behavior of interacting variables, software design, and
experience of a tester. A tester should have proper
knowledge of the source code and a clear idea of where
and how the fault might take place.

2) Inject actual fault

After completing the analysis, faults are injected in
specific place, which is accessible by the system and
execute it. A tester observes the behavior of the system
and compares with previous output. Faults have so many
varieties [16] that we cannot study every kind of their
impact on software so we select most relevant faults

which may produce by indirect interaction and the list of
faults is given in Table 1.

We use fault injection technique to evaluate our
approach by finding mutation score. Mutation score is
used to measure the quality of a test suite detecting the
introduced faults in the mutants. The main idea behind
this is to observe how newly defined errors by our
criteria are discovered. In the call-based technique, no
error will discover without indirect interaction. The
overview of the technique is given in Fig. 6 and the steps
are given below:

Step 1: Generate interaction type and interacting modules
from the interaction model.

Step 2: According to the type of interaction, we select
possible faults from fault list. As we have already
discussed that faults generated by indirect interaction,
which is not studied yet. There are some existing works,
discussed in related works, but does not contain standard
model or representation. We have analyzed indirect
interaction and make a list of errors, which can produce
during run-time in the previous section.

Table 1. Different Faults by Interaction of Resources

Type

Fault description

Conjugative definition of the modular variable

Last value of first module is not equal to first value of second module

Shared variable

Different type in different module. Integer type in the first module and float type in the second module.

Shared variable exceeds the boundary value leaving or entering module

File removed in between two modules

File data mismatch between modules

File File modified incorrectly in one module

Required value is not present in file

Garbage value handling

Interacting device not found

Wrong device connected

I/O Device

Wrong data receive/transmit from device from another module

Device is in wrong state while interacting

Timeout between modular interaction




Step 3: One of the important parts is finding the
injection point. We analyze interacting module and find
execution paths, where injected fault will be executed. It

is of no use if the fault is not triggered during execution.

Step 4: After injecting the fault, we run the program
and observe the output/behavior of the system. We
compare the output with the original output and make

report according to that.

4.3 Measure Metrics

For measuring the effectiveness and feasibility, a path
based fault injection technique is implemented to find
mutation score by existing call-based approach and
indirect interaction based approach. Every testing criteria
have its own advantages and disadvantages. Rather than
comparing with existing approaches, it is useful to show
that indirect interaction related faults, undetected by call-
based technique, could be killed by proposed technique
resulting higher mutation score. Fault injection technique
considers whether injected fault causes a change in output
or not. In call based fault injection techniques, fault
generated by module interface or declaration information
and does not identify indirect interaction errors. However,
our focus is to find indirect interaction and produce
possible faults for it to see whether the existing approach
can detect those faults. Mutation score is calculated by
the ratio between the number of killed mutants and total
injected fault as formulated in Equation (1). We use
previous work [12] to generate test path for finding fault
injection point, which can minimize time and cost of the

testing process in a high rate.

Noofkilled Mutant
Total injected fault

Mutation score = x 100% (1)

5. Case Study and Evaluation

The most common question asked about any testing
technique is whether the technique has more coverage
than existing one or whether the technique is effective at
detecting faults. To demonstrate the effectiveness of the
proposed approach, several experiments conducted on
various systems to find indirect interaction. Those
interactions cannot be found by traditional approaches

where the potential cause of errors may lie. It is very

HICI= Ala-ol 28 = V|8 21 4588 HAE 718 425

ita}

difficult to find a single system carrying all indirect
interactions together. Therefore, we use a whole program
or some parts of the program for analysis. We consider
the following research question, which will be addressed

after case study.

RQ: Do the test suite identify indirect interaction based
faults compare to call based approach? If so, does it

Increase mutation score?

During the case study, different embedded systems like
room heating system, USB control system and general
purpose system like student management system, telecom
billing system is used. General purpose system is used for
the unavailability of open source embedded system.
However, we consider that the test result would be
somewhat similar. Every system is divided into several
modules and has critical interaction among them through
interacting variable, which cannot be found in a traditional
software system.

For these test programs, we have chosen 44 faults
based on different indirect interaction. These faults are
injected manually into the source code and executed the
programs. A detailed description of the case study is
given in Table 2. It represents whether the faults are
found or not. For better understanding faults are
described in details. We compare previously recorded
output (without injecting the fault) with the output
generated by injected fault. If the outputs are same, then
either the test case is not adequate, or the program is
unable to identify the fault. For new indirect interaction,
faults should not be detected by existing call-based
criteria because they do not consider indirect interaction.
From Table 3, it can be seen that for several systems 44
faults are injected and among them, 23 faults are detected
which are not detected by the call-based approach.

The goal of this empirical study is to observe if our
injected faults are detected by the system or not. If faults
are not detected then it means, in software development
process, a developer does not concern about particular
indirect interaction. We have created 44 mutants and
observe how many of them are killed. Call based criteria
killed only 21 mutants and 23 mutants are live which are
killed by our IDI based approach. As shown in Fig. 7,
average mutation score is around 50% by existing

call-based criteria, so half of the faults are not detected



426 HEMESE=2A/2ZER0 3 HI0IH S Mo M9z (2017. 9)

by the system where our test criteria can cover remaining mutation score. The answer to the K@) is that test suite
faults. Thus, we can conclude that there is a huge Identifies Indirect interaction based faults where call based
necessity to take account indirect interaction while approach failed to do so and it increases mutation score
performing integration testing and by merging call based around 50%.

approach with IDI based approach, we can get 100%

Table 2. Detail Description of Faults, How it is Produced, Where It is Placed with (a) Shared Variable, (b) File and (c) Device

Fault description by shared Room heating| Stdinfol | Stdinfo2 Fault description by File / Stdinfol Tellbill Tellbill
variable / system dT) (i fstudent) | (classMean) system (Loadfile-savetofile) [(Addrecord-listrecord )| (Search-modify)
Sh]are(zl variable gxlceed the boundary Not found Not found | Not found | [File not present in directory. Found-found Not found-found | Found-found
e TOne oL e : Empty file in directory. Not found-not found Not found-not Found-not
o valu i ud‘l p p p Directory name is not given. Found-found Found-found Found-found
Different type in different module. Foun Foun Foun Wrong operation. Change read Not found-found Not found-not | Not found-not
Conjugative definition of variable. Not found Not found |Not found | | file to write file. ot found-toun found found
Delete one assignment statement. Not found Not found |Not found | |Incorrect file name in directory. | Found-not found o - found Found-found
(a) (b)
Fault description by device / Scenario Result(readFromDevice-writeToDevice)

system

After calling Module A (transmit data to device), |[Segmentation fault (core dumped)
change permission of device(only read) before Input lost

calling Module B(transmit data to device).

Port number changed while |After calling Module A, change port number of

Device permission changed
while interacting

interacting device before calling Module B. No effect
Interacting device not found Aﬁ;r calling Module A, remove device before Segmentation fault (core dumped)
calling Module B. Input lost

Wrong data receive/transmit

. Module A transmit float number to device and
from device from another

L . Float data transform to integer value
Module B receive integer data from device &

module
(c)
Table 3. Comparison Between Call Based Approach and Our Approach
System Total Mutants No of killed Mutant Mutation score
Call based approach IDI approach Call based approach IDI approach

RoomHeat 5 2 3 40% 60%
StdInfol 10 4 6 40% 60%
StdInfo2 10 6 4 60% 40%
TelBill 19 11 8 58% 42%

Usb ctrl 4 2 2 50% 50%

Mutation score
Usb device |
Telsil [
Stanfo? I
Stdinfol I
RoomHeat I
0% 20% 40% 60% 80% 100% 120%
O Call based approach  m IDI approach

Fig. 7. Mutation Score Between Call Based and IDI Based Approach. For Room Heating System
Call Based Approach Cover 40% Faults Where IDI Based Approach Cover 60% Faults.



6. Conclusion and Future Works

The paper presents a general specification of an inter—
action model including the indirect interaction bhetween
modules of the embedded system and proposes a fault
injection technique to test fault tolerance of system based
on indirect interaction error.

In our research, we identified different indirect inter-
actions that are considered specifying an interaction
model and listed different types of faults according to
different indirect interaction. Those faults are injected into
the source code and the whole or part of the program is
executed. The output of the original program is compared
to the output generated after fault injection. If the outputs
are same, either then the test case is not adequate, or the
program is unable to identify the fault. To show the
feasibility and effectiveness of the proposed approach,
some case studies are done and conducted qualitative
experiments on several systems. The result indicates that
there is a huge necessity to test indirect interaction while
performing integration testing.

Future work will focus on implementing a tool suite of
our test technique that automatically generates test data
for interacting variables between modules. In addition, we
intend to undertake a depth study to find further interaction
pattern for feature-oriented software development and

perform timing interaction.

References

[1] US Department of Commerce, N., “Updated NIST Software
Uses Combination Testing to Catch Bugs Fast and Easy,”
2010.

[2] N. G. Leveson, “Role of Software in Spacecraft Accidents,”
J. Space. Rockets, Vol.41, No.4, pp.564-575, 2004.

[3] B. Liscouski, and W. Elliot, “U.S.-Canada Power System
Outage Task Force,” System 40, 238, 2004.

[4] Honda Admits Software Problem, Recalls 175,000 Hybrids
IEETimes [Internet], www.eetimes.com/document.asp?doc_id
=1323061, 2014.

[5] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface
mutation: An approach to integration testing,” IEEE
Transactions on Software Engineering, Vol.27, No.3, pp.228-
247, Mar., 2001.

HICI= Aol Zg =g 7let 2t

ita}

8 MzE HAE 7Y 427

[6] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, “Interface
faults injection for component based integration testing,”
International Conference on Computer Informatics, 2006.

[7] R. Moraes and E. Martins, “An architecture-based strategy
for interface fault injection. Workshop on Architecting
Dependable Systems,” IEEE/IFIP Int. Conf. on Dependable
Systems and Networks, Italy, 2004.

[8] Z. Jin and A. Offutt, “Coupling—based criteria for integration
testing,” Software Testing Verification Reliability, pp.133 -
154, 1998.

[9] H. Zhu and X. He, “A Methodology of Component Integration
Testing,” Springer, pp.239-269, 2005.

[10] M. B. Cohen, “Designing test suites for software interaction
testing,” Ph.D. thesis, University of Auckland, New Zealand,
2004.

[11] Brady J. Garvin and Myra B. Cohen, “An Overview of
Feature— Oriented Software Development,” Journal of Object
Technology, Vol.8, No.4, Jul., 2008.

[12] H. M. Igbal and W. J. Lee, “Data Flow Based Integration
Testing for Embedded System Using Interaction Model,”
2Ist Asia-Pacific Software Engineering Conference, pp.
423-429, Jeju, 2014.

[13] Source Insight [Internet], http://www.sourceinsight.com/
(accessed 12.7.15), 2012.

[14] A. A. Samuel, N. Jayalal, B. Valsa, C. A. Ignatious, and J.
P. Zachariah, “Software fault injection testing of the
embedded software of a satellite launch vehicle,” IEEE
Potentials, Vol.32, No.5, pp.38-44, 2013.

[15] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault
injection techniques,” The International Arab Journal of
Information Technology, Vol.1, No.2, pp.171-186, Jul., 2004.

[16] C. Kaner, J. Falk, and H. Q. Nguyen, “Testing Computer
Software,” 2nd Edition, Dreamtech Press, 2000.

Muhammad labal Hossain
e-mail : ighal@knu.ac.kr
Muhammad Igbal Hossain is a Ph. D.
student in the school of computer science

and engineering at Kyungpook National

N | I . . .
C‘N‘Nw\\q“\‘;‘\‘\“\‘{\w ‘W\N i University, South Korea. His research interest
¢ i

u“h“\‘\“\‘\” ‘\“ |
I
particularly testing and verification.

‘f includes embedded software engineering



428 HENMEE=2X/AZER0 R HIOIH St MeT M9=(2017. 9)

Woo lJin Lee
e-mail : woojin@knu.ac.kr
Woo Jin Lee is currently a professor in
the school of computer science and
engineering at Kyungpook National Uni-

versity, South Korea. He received the Ph.

D. degree in Computer Science from
Korea Advanced Institute of Science and Technology in 1999.
His research interest includes embedded software testing,
modeling and verification of embedded software, and component—

based software development.



