
임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법 419

Fault Injection Based Indirect Interaction Testing Approach

for Embedded System

Muhammad Iqbal Hossain†⋅Woo Jin Lee††

ABSTRACT

In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules

may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the

resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction

faults between the modules are one of the major cause of critical software failure. Therefore, interaction testing is an essential phase for

reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction

faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is

made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are

based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by

existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect

interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault

injection technique to evaluate the feasibility and effectiveness of our approach.

Keywords : Indirect Interaction, Interaction Testing, Test Case Generation, Fault Injection, Embedded System

임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법

Muhammad Iqbal Hossain
†
⋅이 우 진

††

요 약

임베디드 시스템에서는 모듈간의 상호작용으로 데이터를 주고 받는다. 이때 오류가 포함된 리소스 데이터를 전달하면 시스템의 실행 오류를

유발할 수 있다. 상호작용에 활용되는 리소스들은 모듈간의 의존관계를 만들며 의존관계에 있는 모듈의 변화가 다른 모듈의 기능에 영향을 미

치게 된다. 몇몇 임베디드 시스템 조사 자료에 따르면 모듈간의 상호작용 오류가 심각한 소프트웨어 실패의 원인이 되기도 한다. 상호작용 테

스팅 단계에서는 이러한 상호작용 오류를 검출하여 시스템 실패의 위험을 낮추고자 한다. 모듈간의 상호작용은 직접 또는 간접적으로 일어난

다. 직접적인 상호작용은 모듈의 직접 호출을 통해 이루어지며, 간접 상호작용은 직접호출 이외에 리소스 데이터의 의존성을 통해 나타난다. 이

연구에서는 직접 상호작용에 의한 오류 검출 방식에서는 발견되지 않는 간접 상호작용과 연관된 오류를 검출하고자 한다. 먼저 상호작용 패턴

을 분석하여 상호작용 모델을 생성하고 이를 기반으로 상호작용 오류를 검출하는 테스트 케이스 디자인 방법을 제안한다. 마지막으로 결함 주

입 기법을 이용하여 제안된 방법의 효용성 및 실효성을 분석한다.

키워드 : 간접 상호작용, 상호작용 테스팅, 테스트 케이스 생성, 결함주입 기법, 임베디드 시스템

KIPS Tr. Software and Data Eng.

Vol.6, No.9 pp.419~428 pISSN: 2287-5905

1. Introduction1)

From complex safety critical systems like automobile,

medical system to home appliances, cellular phones even

※ 본 논문은 2017년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아
수행된 연구임(No. NRF-2017R1D1A3B04035880).

†준 회 원 :경북대학교 컴퓨터학부 박사과정
††정 회 원 :경북대학교 컴퓨터학부 교수

Manuscript Received : March 17, 2017
First Revision : June 12, 2017
Accepted : June 17, 2017

* Corresponding Author : Woo Jin Lee(woojin@knu.ac.kr)

toothbrush is controlled by embedded software. So testing

embedded system became a serious concern in product

development life cycle. A study commissioned by the

National Institute of Standards and Technology found that

software errors cost the US economy $59.5 billion in

every year. The study estimated over one-third of that

amount, $22.2 billion, could be eliminated by improving

test techniques [1]. An embedded system is a combination

of processors, sensors, and actuators which have intensive

interaction with resources. Also, development procedure is

https://doi.org/10.3745/KTSDE.2017.6.9.419

420 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제9호(2017. 9)

complex and changes to software interfaces and hardware

are common, which makes the testing challenging.

Embedded system comprises several modules and exchange

resource data by interacting among themselves. As a

result, any changes in resources by one module affects

the functionality of another module. Therefore, interaction

testing is an essential phase to reduce the interaction

faults and to minimize the risk. Interaction faults are

generated by the direct and indirect interaction between

modules where the direct interaction is made through

interfaces and the indirect interaction is made underneath

of interface in which data dependence relationship with

resources may cause a different outcome. Therefore, it is

necessary to verify the correctness of each indirect

interaction.

Several investigations of aerospace problems show

critical software failures in aerospace missions are caused

by functional interactions among components and in-

complete specifications. Lutz examined 387 software

errors uncovered during integration and system testing of

the Voyager and Galileo spacecraft [2]. In the North

Eastern United States, one of the biggest power blackouts

in history happened on August 14, 2003. While the causes

of this blackout were nothing to do with a software bug,

it could have been averted. Two parts of a system were

competing over the same resource and could not resolve

the conflict, which indirectly caused the alarm system to

freeze and stop processing alerts [3]. In 2014, automobile

company Honda recalled 175,000 hybrid vehicles in Japan

for a software problem. A software glitch in engine control

module causes sudden acceleration in cruise control module

[4]. All possible direct interaction scenarios between

engine control and cruise control were tested but changes

of resources by engine control module indirectly affected

the cruise control unit resulting into an error. In all these

cases, problems can be avoided if we put more effort on

testing the indirect interaction between modules. In

high-risk sectors, embedded systems need to go through

a rigorous testing process. At first, each software module

is tested separately as a unit and then combined to

proceed for integration testing. The integration testing

has the goal of proving whether developed features work

together well enough for the software to submit for

system testing. When combining all modules together,

errors can emerge from their interactions. We still rely on

traditional black box testing or genetic algorithm based

approaches capable of finding particular faults caused by

direct interaction but faults emerged by indirect inter-

action are difficult to find due to the lack of standard

pattern and model.

In this paper, we propose a noble approach to generate an

interaction model and then investigate several kinds of

indirect interaction that causes errors through shared

resources, file, device etc. denoted as interacting variable

throughout this paper. The main contributions of this paper

are:

� Generate an interaction model and categorize fault

type.

� Specify abnormal indirect interaction pattern.

� Evaluate our approach through fault injection

techniques widely used to validate the testing model.

By fault injection technique, we like to show how

existing approaches incompetent to find the faults which

are generated by indirect interactions.

2. Related Works

There was a few work on integration testing of the

embedded system, which considers the internal behavior

of the system but lacks a standard model. Most of the

existing integration testing methods such as Genetic

algorithm method, coupling based method, decision table

method, variable strength array, verification pattern etc.

define test cases from software specifications and did not

consider internal execution paths of integrated modules

for detecting function interaction faults. Fault injection/

Mutation-based technique was used to evaluate a test

approach. Many researchers discussed several faults that

can be generated during integration testing but none of

them are related to indirect interaction faults. An

integration error occurs when an incorrect value is passed

through a unit connection in [5]. They illustrated how

incorrect values entering and exiting a unit call and

causes erroneous output. Here, only actual parameter,

global variable, and return value are considered. One of its

weakness is that it was a mutation operator based

technique and imposes a higher cost as every location in

the program where the global variable used/defined is a

potential location for mutation. This paper introduced an

improved, simple and easy technique of interface faults

insertion using AspectJ for Java component-based

applications [6]. The technique can ignore the entire

execution of an interface service, corrupting its input

values and returning a bogus return value. The faults are

focused on the interface that can be invoked in different

ways and would lead to different event executions. Also,

there is no control over when the fault should be

triggered because faults are triggered by the program

임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법 421

itself, whenever the program calls the interface services.

This work proposed a fault injection strategy to test the

interaction among components [7]. For that reason,

interface faults were introduced by corrupting input data

as well as interface output data. Even though almost

every researcher focused on interface information and

generate faults according to the input and output of the

module, erroneous or incomplete interface specifications

may lead to futile faults. We need special faults that occur

during interaction among modules, which could not be

found by analyzing the interface information.

A Coupling-based testing technique is proposed here

[8] and used Mistix program, a UNIX file system, as a

case study which does not have any call, stamp data/

control, or external coupling also it is unknown how the

technique will behave in the more complex system. 21

faults are inserted into Mistix, which does not reflect the

integration/interaction relationship of modules. This

survey paper in [9] identifies one of the major challenges

in integration testing in component-based software

engineering was identifying the dependencies. The author

investigates how to observe system’s dynamic behavior

in component integration testing. Here components are

treated as a black box and observe their interrelationship

by statements, execution sequence, glued parameter etc.

Here, only basic interaction is observed and their method

cannot find the indirect interaction among components.

3. Indirect Interaction

Embedded system encompasses a broad range of

hardware and software system where the software

system is divided into several modules, which are

developed by several vendors or different developer team.

An interaction take place when two or more modules have

a calling relationship among them or while accessing

same resources by several modules. Although some

researcher uses the same term to classify feature inter-

action, human-computer interaction, interaction testing

etc. which are quite distinct from our work. For example,

the interaction testing focused on how components

interact each other by changing the combination of

components. Suppose there are four components, each

with three different values, resulting in 81 possible system

configurations. Each of the system tests must be run in

each of these 81 configurations in order to detect any

unexpected interaction faults that will occur between

components [10]. A feature interaction is a situation in

which two or more features exhibit unexpected behavior

that does not occur when the features are used in

isolation. Several approaches can be used to implement

features cohesively in order to be able to compose them in

different combinations [11].

According to the interaction relation, we divide them

into direct and indirect interaction. Direct interaction is

the explicit call relation between modules where callee

module provides all input, output, and other reference

information to the caller module. On the other hand, in

indirect interaction, reference or resource sharing infor-

mation is not present in module interface but accessed

inside the body of the module where possible errors can

occur. For example, in the embedded system shared

variable, file, external device etc. are used extensively

inside a module where caller module has no information

about those. As a result, there creates an indirect

interaction between two modules which access that

particular resource or reference separately. Any change or

error in that resource affects all the accessing modules

and may open a path for unauthorized access to the

resources. The main difference between integration testing

and interaction testing is that in integration testing, data

transaction is visible such as parameter (variable, file,

memory) return value etc. but in interaction testing, data

transaction in not visible from the abstract viewpoint of

the system.

3.1 Formal Model for Indirect Interaction

The interaction between modules is done by clearly

defined and documented interface through a parameter or

return value and most of the existing works focused on

faulty message/data passing through modules. The

functional interface contains the necessary information to

interact with another module. Most of the time interfaces

are not well documented and only contain direct

interaction information, not an indirect one. Finding

indirect interaction is a complicated task because of lack

of standard pattern and model. An indirect interaction

visualized as the exchange of resources among modules,

and resources usually shared between modules indirectly

through files, shared variables, I/O devices, where any

changes to a resource by one module may affect another

module. We represent both direct and indirect interaction

using an interaction model generated by extending call

graph in Fig. 1.

An indirect interaction can be described as a hidden

dependency between two modules through several kinds

of resources where any change in one resource by a

module affects the behavior of another module. At first, a

422 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제9호(2017. 9)

Module

<<resource>>

Call relation

Indirect interaction

Shared variable, File

I/O device

Module A

Module B

Module C

Module D

Module E

Module F

Module G

<
<
S
h
a
re
d
>
> <
<
F
ile

>
>

Fig. 1. Interaction Model Representation

call graph is generated automatically using the static

analyzing tool and then find the indirect interaction

between modules. Fig. 1 represents module A and module

B have a call relation, module B, and module C have an

indirect interaction by the shared variable, module E and

module F have indirect interaction through a file and so

on. The directed edges represent the calling sequences of

the modules. The interaction model is first introduced in

our prior work which uses data flow which is used for

testing embedded system [12]. A formal definition of

indirect interaction is given below.

Definition 1: Interaction model

Interaction model is represented as G = (V, E)

comprising finite set of modules, called nodes V and a set

of interactions, called edges E, where E ⊆ V × V. Solid

edges represent call relation and dashed edges represent

indirect interaction where indirect interaction is the set of

{Shared variable, File and Device} and directed edges

represent the calling sequences of V.

3.2 Abnormal Scenarios by Indirect Interaction

We have identified three basic types of interactions,

which are designated as test adequacy criteria, causes

indirect interaction (IDI) error. Each of the types is

described in details here.

Case I: Indirect Interaction by Shared Variable

In an embedded system, especially in the interrupt

service routine (ISR), memory management unit (MMU),

task management unit (TMU) etc. use shared variable to

communicate among them and related modules. Shared

variable makes data available from one module to another

or among multiple processes, but has no call relation. It is

very difficult to identify this interaction because shared

data information is not present in module declaration. It

can easily be defined and used in several modules. Any

error or change of shared variables in one module affects

another module. Therefore, it is essential to trace shared

variables and confirm their correctness. The value of a

shared variable while exiting the first module and after

entering the second module need to compare to avoid

value or type mismatch. It is done to make sure that these

is no intermediate modification of the value. We use data

flow based testing technique to find all definition use

information of a shared variable and generated test paths.

Any faults in data flow will be resolved by it.

decision_algo check_and_set_dnu

dispatch_pending_elv

serivce_cntr
main

Fig. 2. Indirect Interaction by Shared Variable

For example, Fig. 2 shows the shared variable in elevator

system where service_cntr is a shared variable defined

and used in check_and_set_dnu and dispatch_pending_elv

modules.

Case II: Indirect Interaction by File

Many embedded systems have a block of non-volatile

RAM of which the kernel can maintain no memory page

descriptor to mount a read/write filesystem. In addition,

some embedded OSs provide memory management support

for a temporary or permanent file system storage scheme.

Usually, file is used to get input into a program or to

display/store data from a program. MMU processes a file

for temporal/permanent storage of data, which can be

read, write or append by several modules. A module can

open a file anywhere in its body and perform required

actions without passing file information through the

parameter of a module interface. Therefore, the tester

does not test how files processes inside modules. However,

임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법 423

it is very important to test how the files are processing or

whether the files are performing according to speci-

fication. While interacting, it is needed to test whether

two modules follow that same file content structure or

not. For example, a file may contain an integer value

instead of a floating number. So, while reading an integer

value from a file, although the file contains a float value,

produces an error. There can be cases where the file

system is empty or required file is not present in a

directory. For this reason, these abnormal cases during

interaction should be tested.

Output

Comment

main output.c

Fig. 3. Indirect Interaction by File

For example, Fig. 3 represents indirect interaction using

the file in a project called “simulating a preprocessor

using file,” Here dataStr.c file is read in output module

and write in comment module.

Case III: Indirect Interaction by I/O Device

Embedded system contains extensive application

running on different devices and these are used to receive

data into a program or to transmit output data from a

program. For example, in microwave oven system, the

door sensor and heating elements interact with its

software system and execute according to their operations.

This device corresponds to a real world physical object

that interacts with the system via sensors and actuator. A

module can enable any sensors and actuator anywhere in

its body and perform required actions. It is not needed to

pass device information through a parameter. Therefore,

the tester does not test how devices process inside

modules. However, it is very important to test how the

devices are being processed or whether the devices are

performing according to specification. There can be a

wrong state, timing failure, fault handling etc. problems

while a device, which may lead to critical error, does the

interaction.

motor

Alarm

controller Level sensor

Fig. 4. Indirect Interaction by Device

For example, Fig. 4 represents indirect interaction using

the level sensor in a water level monitoring system. Here,

level sensor continuously read water level to start/stop the

motor and in particular level, it triggers an alarm.

4. Proposed indirect interaction based approach

Our proposed indirect interaction approach comprises

two phases. In the first phase, we find interacting

variables between two modules by generating interaction

model and define different faults by the interaction of

resources. In the second phase, we use fault injection

technique to verify the correctness of each indirect

interaction.

4.1 Interaction Model Generation

At first, using source insight tools [13], the source code

is parsed and maintained in a database to store symbolic

information dynamically to generate a call graph. A list of

modules and arcs i.e. caller-callee relationship between

two modules are acquired by generating a call graph.

Extraction of the interacting variable is a manual process,

which can be done by developer or tester by analyzing

source code. Many techniques use interface information to

find the interaction, which can be erroneous or incomplete,

and several works have already done testing this kind of

interaction. Our focus is on the resources accessed by two

modules inside their body, which are not present in

interface information. Overview of finding interacting

variable is shown in Fig. 5.

Source code Parsed and symbolized Call graph generation

Static analysis Interacting variables Interaction model

Fig. 5. Overview of Finding Interacting Variable

4.2 Fault Injection Technique

Fault injection technique is described as intentional

injection of a failure condition into a running system

during a test activity, to determine whether the system

reacts well to off-nominal or exceptional conditions [14]

[15]. Faults that injected into the system represent the

actual faults that occur within the system. A tester

creates a list of faults and injects those faults into the

424 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제9호(2017. 9)

Type Fault description

Shared variable

Conjugative definition of the modular variable

Last value of first module is not equal to first value of second module

Different type in different module. Integer type in the first module and float type in the second module.

Shared variable exceeds the boundary value leaving or entering module

File

File removed in between two modules

File data mismatch between modules

File modified incorrectly in one module

Required value is not present in file

Garbage value handling

I/O Device

Interacting device not found

Wrong device connected

Wrong data receive/transmit from device from another module

Device is in wrong state while interacting

Timeout between modular interaction

Table 1. Different Faults by Interaction of Resources

Interaction

model

Fault listInteraction type

Interacting module
Injection

point

Inject

fault

Result

analysis

Fig. 6. Overview of Fault Injection Technique

system. The final report sent to the developer to correct

the code so that faults can be handled correctly. To inject

fault in the source code, we may modify the code, add

new code or delete part of the code. Fault injection

process is divided into two parts.

1) Pre-injection analysis

The pre-injection analysis involves creating the fault

according to test criteria. Test criteria is based on the

behavior of interacting variables, software design, and

experience of a tester. A tester should have proper

knowledge of the source code and a clear idea of where

and how the fault might take place.

2) Inject actual fault

After completing the analysis, faults are injected in

specific place, which is accessible by the system and

execute it. A tester observes the behavior of the system

and compares with previous output. Faults have so many

varieties [16] that we cannot study every kind of their

impact on software so we select most relevant faults

which may produce by indirect interaction and the list of

faults is given in Table 1.

We use fault injection technique to evaluate our

approach by finding mutation score. Mutation score is

used to measure the quality of a test suite detecting the

introduced faults in the mutants. The main idea behind

this is to observe how newly defined errors by our

criteria are discovered. In the call-based technique, no

error will discover without indirect interaction. The

overview of the technique is given in Fig. 6 and the steps

are given below:

Step 1: Generate interaction type and interacting modules

from the interaction model.

Step 2: According to the type of interaction, we select

possible faults from fault list. As we have already

discussed that faults generated by indirect interaction,

which is not studied yet. There are some existing works,

discussed in related works, but does not contain standard

model or representation. We have analyzed indirect

interaction and make a list of errors, which can produce

during run-time in the previous section.

임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법 425

Step 3: One of the important parts is finding the

injection point. We analyze interacting module and find

execution paths, where injected fault will be executed. It

is of no use if the fault is not triggered during execution.

Step 4: After injecting the fault, we run the program

and observe the output/behavior of the system. We

compare the output with the original output and make

report according to that.

4.3 Measure Metrics

For measuring the effectiveness and feasibility, a path

based fault injection technique is implemented to find

mutation score by existing call-based approach and

indirect interaction based approach. Every testing criteria

have its own advantages and disadvantages. Rather than

comparing with existing approaches, it is useful to show

that indirect interaction related faults, undetected by call-

based technique, could be killed by proposed technique

resulting higher mutation score. Fault injection technique

considers whether injected fault causes a change in output

or not. In call based fault injection techniques, fault

generated by module interface or declaration information

and does not identify indirect interaction errors. However,

our focus is to find indirect interaction and produce

possible faults for it to see whether the existing approach

can detect those faults. Mutation score is calculated by

the ratio between the number of killed mutants and total

injected fault as formulated in Equation (1). We use

previous work [12] to generate test path for finding fault

injection point, which can minimize time and cost of the

testing process in a high rate.

 


 


×  (1)

5. Case Study and Evaluation

The most common question asked about any testing

technique is whether the technique has more coverage

than existing one or whether the technique is effective at

detecting faults. To demonstrate the effectiveness of the

proposed approach, several experiments conducted on

various systems to find indirect interaction. Those

interactions cannot be found by traditional approaches

where the potential cause of errors may lie. It is very

difficult to find a single system carrying all indirect

interactions together. Therefore, we use a whole program

or some parts of the program for analysis. We consider

the following research question, which will be addressed

after case study.

RQ: Do the test suite identify indirect interaction based

faults compare to call based approach? If so, does it

increase mutation score?

During the case study, different embedded systems like

room heating system, USB control system and general

purpose system like student management system, telecom

billing system is used. General purpose system is used for

the unavailability of open source embedded system.

However, we consider that the test result would be

somewhat similar. Every system is divided into several

modules and has critical interaction among them through

interacting variable, which cannot be found in a traditional

software system.

For these test programs, we have chosen 44 faults

based on different indirect interaction. These faults are

injected manually into the source code and executed the

programs. A detailed description of the case study is

given in Table 2. It represents whether the faults are

found or not. For better understanding faults are

described in details. We compare previously recorded

output (without injecting the fault) with the output

generated by injected fault. If the outputs are same, then

either the test case is not adequate, or the program is

unable to identify the fault. For new indirect interaction,

faults should not be detected by existing call-based

criteria because they do not consider indirect interaction.

From Table 3, it can be seen that for several systems 44

faults are injected and among them, 23 faults are detected

which are not detected by the call-based approach.

The goal of this empirical study is to observe if our

injected faults are detected by the system or not. If faults

are not detected then it means, in software development

process, a developer does not concern about particular

indirect interaction. We have created 44 mutants and

observe how many of them are killed. Call based criteria

killed only 21 mutants and 23 mutants are live which are

killed by our IDI based approach. As shown in Fig. 7,

average mutation score is around 50% by existing

call-based criteria, so half of the faults are not detected

426 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제9호(2017. 9)

by the system where our test criteria can cover remaining

faults. Thus, we can conclude that there is a huge

necessity to take account indirect interaction while

performing integration testing and by merging call based

approach with IDI based approach, we can get 100%

mutation score. The answer to the RQ is that test suite

identifies indirect interaction based faults where call based

approach failed to do so and it increases mutation score

around 50%.

Fault description by shared

variable / system
Room heating

(dT)

Stdinfo1
(numofstudent)

Stdinfo2
(classMean)

Shared variable exceed the boundary

value in one module.
Not found Not found Not found

Last value of first module is not equal

to first value of second module.
Found Found Found

Different type in different module. Found Found Found

Conjugative definition of variable. Not found Not found Not found

Delete one assignment statement. Not found Not found Not found

Fault description by File /

system
Stdinfo1

(Loadfile-savetofile)

Tellbill
(Addrecord-listrecord)

Tellbill
(Search-modify)

File not present in directory. Found-found Not found-found Found-found

Empty file in directory. Not found-not found
Not found-not

found

Found-not

found

Directory name is not given. Found-found Found-found Found-found

Wrong operation. Change read

file to write file.
Not found-found

Not found-not

found

Not found-not

found

Incorrect file name in directory. Found-not found ∞ - found Found-found

(a) (b)

(c)

Fault description by device /

system
Scenario Result(readFromDevice-writeToDevice)

Device permission changed

while interacting

After calling Module A (transmit data to device),

change permission of device(only read) before

calling Module B(transmit data to device).

Segmentation fault (core dumped)

Input lost

Port number changed while

interacting

After calling Module A, change port number of

device before calling Module B.
No effect

Interacting device not found
After calling Module A, remove device before

calling Module B.

Segmentation fault (core dumped)

Input lost

Wrong data receive/transmit

from device from another

module

Module A transmit float number to device and

Module B receive integer data from device
Float data transform to integer value

Table 2. Detail Description of Faults, How it is Produced, Where It is Placed with (a) Shared Variable, (b) File and (c) Device

System Total Mutants
No of killed Mutant Mutation score

Call based approach IDI approach Call based approach IDI approach

RoomHeat 5 2 3 40% 60%

StdInfo1 10 4 6 40% 60%

StdInfo2 10 6 4 60% 40%

TelBill 19 11 8 58% 42%

Usb ctrl 4 2 2 50% 50%

Table 3. Comparison Between Call Based Approach and Our Approach

Fig. 7. Mutation Score Between Call Based and IDI Based Approach. For Room Heating System

Call Based Approach Cover 40% Faults Where IDI Based Approach Cover 60% Faults.

임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법 427

6. Conclusion and Future Works

The paper presents a general specification of an inter-

action model including the indirect interaction between

modules of the embedded system and proposes a fault

injection technique to test fault tolerance of system based

on indirect interaction error.

In our research, we identified different indirect inter-

actions that are considered specifying an interaction

model and listed different types of faults according to

different indirect interaction. Those faults are injected into

the source code and the whole or part of the program is

executed. The output of the original program is compared

to the output generated after fault injection. If the outputs

are same, either then the test case is not adequate, or the

program is unable to identify the fault. To show the

feasibility and effectiveness of the proposed approach,

some case studies are done and conducted qualitative

experiments on several systems. The result indicates that

there is a huge necessity to test indirect interaction while

performing integration testing.

Future work will focus on implementing a tool suite of

our test technique that automatically generates test data

for interacting variables between modules. In addition, we

intend to undertake a depth study to find further interaction

pattern for feature-oriented software development and

perform timing interaction.

References

[1] US Department of Commerce, N., “Updated NIST Software

Uses Combination Testing to Catch Bugs Fast and Easy,”

2010.

[2] N. G. Leveson, “Role of Software in Spacecraft Accidents,”

J. Space. Rockets, Vol.41, No.4, pp.564-575, 2004.

[3] B. Liscouski, and W. Elliot, “U.S.-Canada Power System

Outage Task Force,” System 40, 238, 2004.

[4] Honda Admits Software Problem, Recalls 175,000 Hybrids

IEETimes [Internet], www.eetimes.com/document.asp?doc_id

=1323061, 2014.

[5] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface

mutation: An approach to integration testing,” IEEE

Transactions on Software Engineering, Vol.27, No.3, pp.228-

247, Mar., 2001.

[6] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, “Interface

faults injection for component based integration testing,”

International Conference on Computer Informatics, 2006.

[7] R. Moraes and E. Martins, “An architecture-based strategy

for interface fault injection. Workshop on Architecting

Dependable Systems,” IEEE/IFIP Int. Conf. on Dependable

Systems and Networks, Italy, 2004.

[8] Z. Jin and A. Offutt, “Coupling-based criteria for integration

testing,” Software Testing Verification Reliability, pp.133–

154, 1998.

[9] H. Zhu and X. He, “A Methodology of Component Integration

Testing,” Springer, pp.239-269, 2005.

[10] M. B. Cohen, “Designing test suites for software interaction

testing,” Ph.D. thesis, University of Auckland, New Zealand,

2004.

[11] Brady J. Garvin and Myra B. Cohen, “An Overview of

Feature- Oriented Software Development,” Journal of Object

Technology, Vol.8, No.4, Jul., 2008.

[12] H. M. Iqbal and W. J. Lee, “Data Flow Based Integration

Testing for Embedded System Using Interaction Model,”

21st Asia-Pacific Software Engineering Conference, pp.

423-429, Jeju, 2014.

[13] Source Insight [Internet], http://www.sourceinsight.com/

(accessed 12.7.15), 2012.

[14] A. A. Samuel, N. Jayalal, B. Valsa, C. A. Ignatious, and J.

P. Zachariah, “Software fault injection testing of the

embedded software of a satellite launch vehicle,” IEEE

Potentials, Vol.32, No.5, pp.38-44, 2013.

[15] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault

injection techniques,” The International Arab Journal of

Information Technology, Vol.1, No.2, pp.171-186, Jul., 2004.

[16] C. Kaner, J. Falk, and H. Q. Nguyen, “Testing Computer

Software,” 2nd Edition, Dreamtech Press, 2000.

Muhammad Iqbal Hossain

e-mail : iqbal@knu.ac.kr

Muhammad Iqbal Hossain is a Ph. D.

student in the school of computer science

and engineering at Kyungpook National

University, South Korea. His research interest

includes embedded software engineering

particularly testing and verification.

428 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제9호(2017. 9)

Woo Jin Lee

e-mail : woojin@knu.ac.kr

Woo Jin Lee is currently a professor in

the school of computer science and

engineering at Kyungpook National Uni-

versity, South Korea. He received the Ph.

D. degree in Computer Science from

Korea Advanced Institute of Science and Technology in 1999.

His research interest includes embedded software testing,

modeling and verification of embedded software, and component-

based software development.

