• Title/Summary/Keyword: embedded testing

Search Result 411, Processing Time 0.026 seconds

A Test Case Generation Techniques Based on J2ME Platform (J2ME 플랫폼 기반의 테스트케이스 생성 기법)

  • Kim Sang-Il;Roh Myong-Ki;Rhew Sung-Yul
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.215-222
    • /
    • 2006
  • The importance of mobile software test is being addressed to improve the productivity and reliability of the software. Test automation technique based on mobile platform is required for effective application of mobile software test. That is, a technique is needed to generate test case for mobile platform API. When test case generated, software productivity and reliability are improved, while test duration and cost are decreased. In this paper, we identified test case generation scope through previous works about test automation, suggested keyword driven method, a test case generation technique on J2ME platform, and recognized that proposed method can be applicable to generating test case based on J2ME platform.

A Method for Improving Interface Fault Tolerance in the Embedded Software (임베디드 소프트웨어의 인터페이스 결함허용성 향상 기법)

  • Choi, In Hwa;Paik, Jong Ho;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Generally, there can be a interface discrepancy between the legacy hardware and the new software in combining new software component with reused hardware components in the embedded system. This kind of the interface discrepancy may cause various types of faults and also result in declining interface fault tolerance. In this paper we propose a method to improve interface fault tolerance. First of all, the new interface discrepancy fault type which has not been dealt with before is to be defined and next the testing method for generating test paths is proposed by considering the new defined interface discrepancy fault type in this paper. Several tests show that the proposed method detects more fatal faults about 7.9% in comparison with the existing testing method for commercial broadcasting receiver. Since the proposed method can provide software developers with test paths to be available earlier on the software development cycle, in addition, software developers can regard on interface discrepancy fault in advance. Consequently, more efficient test planning can be established to improve the interface fault tolerance.

Signal Characteristics of Multi-coil Probe for the Test of Reinforcement Embedded in Concrete (다중 코일에 의한 콘크리트내의 철근 탐지 시 신호 특성)

  • Kim, Young-Joo;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.285-289
    • /
    • 2000
  • This study suggests a rebar detection technique for simultaneous detection of size and cover of embedded reinforcement in concrete. The structure of the probe made in this study is somewhat different from commercial ones. This probe has three sensing coils. Rebar size and cover depth can be evaluated by detecting and analyzing the signal from them. Amplitude and phase variation of each coil in the probe was investigated using an impedance analyzer and the loci of transfer functions of the coils were analyzed. The locus of transfer function from the sensing coil positioned inside excitation coil was simple as well known, but the others from the coils outside excitation coil were not so. Actual experiment on rebar detection was performed with our probe and an eddy current test system for various rebar sizes and depths. The signal shape according to variation of cover depths showed the same tendency with the transfer function loci acquired by impedance analyzer. The different variation pattern of signal enabled to evaluate rebar size and cover depth simultaneously.

  • PDF

Programmable Memory BIST and BISR Using Flash Memory for Embedded Memory (내장 메모리를 위한 프로그램 가능한 자체 테스트와 플래시 메모리를 이용한 자가 복구 기술)

  • Hong, Won-Gi;Choi, Jung-Dai;Shim, Eun-Sung;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.69-81
    • /
    • 2008
  • The density of Memory has been increased by great challenge for memory technology, so elements of memory become smaller than before and the sensitivity to faults increases. As a result of these changes, memory testing becomes more complex. The number of storage elements is increased per chip, and the cost of test becomes more remarkable as the cost per transistor drops. Proposed design doesn't need to control from outside environment, because it integrates into memory. The proposed scheme supports the various memory testing algorithms. Consequently, the proposed one is more efficient in terms of test cost and test data to be applied. Moreover, we proposed a reallocation algorithm for faulty memory parts. It has an efficient reallocation scheme with row and column redundant memory. Previous reallocation information is obtained from faulty memory every each tests. However proposed scheme avoids to this problem. because onetime test result from reallocation information can save to flash memory. In this paper, a reallocation scheme has been increased efficiency because of using flash memory.

Inverse model for pullout determination of steel fibers

  • Kozar, Ivica;Malic, Neira Toric;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.197-209
    • /
    • 2018
  • Fiber-reinforced concrete (FRC) is a material with increasing application in civil engineering. Here it is assumed that the material consists of a great number of rather small fibers embedded into the concrete matrix. It would be advantageous to predict the mechanical properties of FRC using nondestructive testing; unfortunately, many testing methods for concrete are not applicable to FRC. In addition, design methods for FRC are either inaccurate or complicated. In three-point bending tests of FRC prisms, it has been observed that fiber reinforcement does not break but simply pulls out during specimen failure. Following that observation, this work is based on an assumption that the main components of a simple and rather accurate FRC model are mechanical properties of the concrete matrix and fiber pullout force. Properties of the concrete matrix could be determined from measurements on samples taken during concrete production, and fiber pullout force could be measured on samples with individual fibers embedded into concrete. However, there is no clear relationship between measurements on individual samples of concrete matrix with a single fiber and properties of the produced FRC. This work presents an inverse model for FRC that establishes a relation between parameters measured on individual material samples and properties of a structure made of the composite material. However, a deterministic relationship is clearly not possible since only a single beam specimen of 60 cm could easily contain over 100000 fibers. Our inverse model assumes that the probability density function of individual fiber properties is known, and that the global sample load-displacement curve is obtained from the experiment. Thus, each fiber is stochastically characterized and accordingly parameterized. A relationship between fiber parameters and global load-displacement response, the so-called forward model, is established. From the forward model, based on Levenberg-Marquardt procedure, the inverse model is formulated and successfully applied.

Experimental and Numerical Validation of the Technique for Concrete Cure Monitoring Using Piezoelectric Admittance Measurements (어드미턴스 기반 콘크리트 경화 모니터링의 실험 및 수치적 검증)

  • Kim, Wan Cheol;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

Setting Priority Criteria for Classification of Self-Testing In Vitro Diagnostic Medical Devices Using Analytic Hierarchy Process Technique (Analytic Hierarchy Process 기법을 활용한 개인용 체외진단의료기기 분류기준에 대한 우선순위 연구)

  • Seol-Ihn Kim;Do-Yun Pyeon;Yong-Ik Jeong;Jahyun Cho;Gaya Noh;Green Bae;Hye-Young Kwon
    • Health Policy and Management
    • /
    • v.33 no.2
    • /
    • pp.173-184
    • /
    • 2023
  • Background: The coronavirus disease 2019 pandemic has been challenging the healthcare service, i.e., the vitalization of the point of care accompanying self-testing in vitro diagnostic medical devices (IVDs). This study aims to suggest priority criteria to classify self-testing IVDs using the analytic hierarchy process technique. Methods: Two dimensions of the characteristics embedded in the IVDs and the diseases to be diagnosed with self-testing IVDs were parallelly considered and independently investigated. In addition, three expert panels consisting of laboratory medical doctors (n=11), clinicians (n=10), and citizens (n=11) who have an interest in the selection of self-testing IVDs were asked to answer to questionnaires. Priorities were derived and compared among each expert panel. Results: First of all, ease of specimen collection (0.241), urgency of the situation (0.224), and simplicity of device operation (0.214) were found to be the most important criteria in light of the functional characteristics of self-testing IVDs. Medical doctors valued the ease of specimen collection, but the citizen's panel valued self-management of the disease more. Second, considering the characteristics of the diseases, the priority criteria were shown in the order of prevalence of diseases (0.421), fatality of disease (0.378), and disease with stigma (0.201). Third, medical doctors responded that self-testing IVDs were more than twice as suitable for non-communicable diseases as compared to communicable diseases (0.688 vs. 0.312), but the citizen's group responded that self-testing IVDs were slightly more suitable for infectious diseases (0.511 vs. 0.489). Conclusion: Our findings suggested that self-testing IVDs could be primarily classified as the items for diagnosis of non-communicable diseases for the purpose of self-management with easy specimen collection and simple operation of devices, taking into account the urgency of the situation as well as prevalence and fatality of the disease.

Developement of Small 360° Oral Scanner Embedded Board for Image Processing (소형 360° 구강 스캐너 영상처리용 임베디드 보드 개발)

  • Ko, Tae-Young;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1214-1217
    • /
    • 2018
  • In this paper, we propose the development of a Small $360^{\circ}$ Oral Scanner embedded board. The proposed small $360^{\circ}$ oral scanner embedded board consists of image level and transfer method changing part FPGA part, memory part and FIFO to USB transfer part. The image level and transmission mode change unit divides the MIPI format oral image received through the small $360^{\circ}$ oral cavity image sensor and the image sensor into low power signal mode and high speed signal mode and distributes them to the port and transfers the level shift to the FPGA unit. The FPGA unit performs functions such as $360^{\circ}$ image distortion correction, image correction, image processing, and image compression. In the FIFO to USB transfer section, the RAW data transferred through the FIFO in the FPGA is transferred to the PC using USB 3.0, USB 3.1, etc. using the transceiver chip. In order to evaluate the efficiency of the proposed small $360^{\circ}$ oral scanner embedded board, it has been tested by an authorized testing institute. As a result, the frame rate per second is over 60 fps and the data transfer rate is 4.99 Gb/second

Inter-Process Testing of Parallel Programs based on Message Sequence Charts Specifications (MSC 명세에 기반한 병렬 프로그램의 프로세스 간 테스팅)

  • Bae, Hyun-Seop;Chung, In-Sang;Kim, Hyeon-Soo;Kwon, Yong-Rae;Chung, Young-Sik;Lee, Byung-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.108-119
    • /
    • 2000
  • Most of prior works on testing parallel programs have concentrated on how to guarantee the reproducibility by employing event traces exercised during executions of a program. Consequently, little work has been done to generate meaningful event sequences, especially, from specifications. This paper describes techniques for deriving event sequences from Message Sequence Charts(MSCs) which are widely used in telecommunication areas for its simplicity in specifying the behaviors of a program. For deriving event sequences from MSCs, we have to uncover the causality relations among events embedded implicitly in MSCs. In order to attain this goal, we adapt vector time stamping which has been previously used to determine the ordering of events taken place during an execution of interacting processes. Then, valid event sequences, satisfying the causality relations, are generated according to the interleaving rules suggested in this paper. The feasibility of our testing technique was investigated using the phone conversation example. In addition, we discussed on the experimental results gained from the example and how to combine various test criteria into our testing environment.

  • PDF

MOdel-based KERnel Testing (MOKERT) Framework (모델기반의 커널 테스팅 프레이뭐크)

  • Kim, Moon-Zoo;Hong, Shin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.523-530
    • /
    • 2009
  • Despite the growing need for customized operating system kernels for embedded devices, kernel development continues to suffer from insufficient reliability and high testing cost for several reasons such as the high complexity of the kernel code. To alleviate these difficulties, this study proposes the MOdel-based KERnel Testing (MOKERT) framework for detection of concurrency bugs in the kernel. MOKERT translates a given C program into a corresponding Promela model, and then tries to find a counter example with regard to a given requirement property, If found, MOKERT executes that counter example on the real kernel code to check whether the counter example is a false alarm or not, The MOKERT framework was applied to the Linux proc file system and confirmed that the bug reported in a ChangeLog actually caused a data race problem, In addition, a new data race bug in the Linux proc file system was found, which causes kernel panic.