DOI QR코드

DOI QR Code

Experimental and Numerical Validation of the Technique for Concrete Cure Monitoring Using Piezoelectric Admittance Measurements

어드미턴스 기반 콘크리트 경화 모니터링의 실험 및 수치적 검증

  • Received : 2016.04.15
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

콘크리트는 건축물에 가장 많이 사용되는 재료 중 하나이다. 건축물 시공 시 적절한 하중 재하시점을 결정하기 위해 콘크리트의 경화 상태의 점검은 매우 중요한 사항이다. 또한 부정확한 경화 모니터링은 건축물의 부실공사 혹은 붕괴로 이어질 수 있다. 본 연구에서는 어드미턴스를 기반으로 한 압전체 센서 자가진단기법을 확장 적용한 콘크리트 경화 모니터링 기법을 개발하였다. 이 기법을 통해 콘크리트의 경화를 모니터링 하였으며 실험 결과 분석을 통해 본 기법의 상대강도 추정 가능성을 확인하였다. 또한 경화 시 발현강도에 따른 어드미턴스 신호 예측을 위해 수치적 모델링을 하였으며 실험 결과와 경화 진행 경향성을 비교하였다. 이를 통해 본 연구에서 개발한 기법의 효용성을 실험 및 수치적으로 확인하였다.

Keywords

References

  1. J. F. Lamond and J. H. Pielert, Eds., "Significance of Tests and Properties of Concrete and Concrete-Making Materials," ASTM International, West Conshohocken, PA, pp. 86-97 (2006)
  2. ASTM Test Method for Time of Setting of Hydraulic Cements by Vicat Needle (C 191), Annual Book of ASTM Standards, Vol. 04.04, ASTM International, West Conshohocken, PA, pp. 179-184 (2002)
  3. ASTM Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance (C 403/C 403M), Annual Book of ASTM Standards, Vol. 04.02, ASTM International, West Conshohocken, PA, pp. 228-233 (2003)
  4. S. W. Shin, A. R. Qureshi, J. Y. Lee and C. B. Yun, "Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete," Smart Materials and Structures, Vol. 17, No. 5, 055002 (2008) https://doi.org/10.1088/0964-1726/17/5/055002
  5. H. K. Lee, K. M. Lee, Y. H. Kim, H. Yim and D. B. Bae, "Ultrasonic in-situ monitoring of setting process of high-performance concrete," Cement and Concrete Research, Vol. 34, Issue 4, pp. 631-640 (2004) https://doi.org/10.1016/j.cemconres.2003.10.012
  6. S. D. Bahador and Y. Yaowen, "Monitoring hydration of concrete with piezoelectric transducers," 35th Conference on Our World in Concrete & Structures, Singapore (2010)
  7. S. Park, S. Ahmad, C. B. Yun and Y. Roh, "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques," Experimental Mechanics, Vol. 46, Issue 5, pp. 609-618 (2006) https://doi.org/10.1007/s11340-006-8734-0
  8. G. Park, H. Sohn, C. R. Farrar and D. J. Inman, "Overview of piezoelectric impedancebased health monitoring and path forward," The Shock and Vibration Digest, Vol. 35, No. 6, pp. 451-463 (2003) https://doi.org/10.1177/05831024030356001
  9. G. Park, C. R. Farrar, A. C. Rutherford and A. N. Robertson, "Piezoelectric active sensor self-diagnostics using electrical admittance measurements," Journal of Vibration and Acoustics, Vol. 128, Issue. 4, pp. 469-476 (2006) https://doi.org/10.1115/1.2202157
  10. A. N. Zagrai and V. Giurgiutiu, "Electromechanical impedance method for crack detection in thin plates," Journal of Intelligent Material Systems and Structures, Vol. 12, No. 10, pp. 709-718 (2001) https://doi.org/10.1177/104538901320560355
  11. R. Dugnani, "Dynamic behavior of structuremounted disk-shape piezoelectric sensors including the adhesive layer," Journal of Intelligent Material Systems and Structures, Vol. 20, No. 13, pp. 1553-1564 (2009) https://doi.org/10.1177/1045389X08101633
  12. G. Park, C. R. Farrar, F. L. di Scalea and S. Coccia, "Performance assessment and validation of piezoelectric active-sensors in structural health monitoring," Smart Materials and Structures, Vol. 15, Issue 6, pp. 1673-1683 (2006) https://doi.org/10.1088/0964-1726/15/6/020
  13. X. Jin and Z. Li, "Dynamic property determination for early-age concrete," Materials Journal, Vol. 98, Issue 5, pp. 365-370 (2001)
  14. D. M. Peairs, G. Park and D. J. Inman, "Improving accessibility of the impedancebased structural health monitoring method," Journal of Intelligent Material Systems and Structures, Vol. 15, No. 2, pp. 129-139 (2004) https://doi.org/10.1177/1045389X04039914