• Title/Summary/Keyword: embedded temperature sensor

Search Result 119, Processing Time 0.029 seconds

Automatic mushroom cultivation system using CAN (CAN을 이용한 자동 버섯재배 시스템)

  • Kim Y. S.;Kim Y. D.;Jeon H. S.;Shin S. D.;Oh G. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.172-176
    • /
    • 2004
  • In this paper, We are inclined to design automated mushroom-cultivation system technology grafting communication technology as CAN(Control Area Network). Mushroom cultivation automated system have a goal to construct stable crop cultivation system ,as we construct embedded-system that can make into one to advance current system. Its sensor part is composed of temperature , humidity and CO2 concentration sensor and of chilling, heating and unit humidity-controlling unit, ventilation fan. In particular, having saved analized temperature, humidity, CO2 concentration data in each sensor, CAN which can control realtime communication is used to analyze the next mushroom-cultivation.

  • PDF

The Design and Implementation of Heating Control System Based on Sensor Networks (센서 네트워크 기반의 난방제어시스템 설계 및 구현)

  • Lee, Jin-Kwan;Lee, Dae-Hyung;Lee, Chang-Bok;Lee, Jong-Chan;Park, Ki-Hong
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • The object of this paper is to design a heating control system based on sensor networks for the house, integrated with computing technology. The proposed system can manage the heating by sensing and analyzing the temperature and humidity in apartment house and others. This system also is capable of giving a comfortable circumstances because the interior of a house is in heated by the sensory temperature based control system.

  • PDF

Reinforcing Effects of Micro-Piles in a high Cut Slope (장대사면 내 억지말뚝의 억제효과 (현장 Case-Study 중심으로))

  • 정성윤;김경태;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.374-381
    • /
    • 2002
  • Several sensor systems are used to estimate the reinforceing effect of pile in hihg cut slopes, and to find a failure zone in slopes effectively. Inclinometer, extensometer and V/W sensor have shown a great potentiality to serve real time health monitoring of the slope structures. They were embedded or attached to the structures, we conducted field tests and test results have shown great solutions for sensor systems of Civil Engineering Smart Structures. This research is to seek for the relationships among the slope movement and the reinforceing effect of pile, and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the relationships. Also, the relationships between temperature and reinforceing effect of pile, and the strain distribution are estimated in this paper.

  • PDF

Characteristics Analysis of 2-pin Sensor Composited Fuel Heater using the Low Temperature Fluidity (저온유동성시험기를 이용한 2-핀용 센서통합연료히터의 특성연구)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1230-1235
    • /
    • 2019
  • In this paper, we have developed sensor composited heater of 2-pin, and unified the fuel filter. In order to evaluate the performance of the 2-pin sensor composited fuel heater, we have make of the low temperature fluidity system. The one measure and analysis the electrical and oil flow quantity characteristics at an input and out port of 2-pin sensor composited fuel heater. Especially, in the characteristics verification elements of the proposed goods, we use the test chamber for the temperature variable and oil flow quantity test, and designed an embedded system for interfacing an engine. By interfacing both user and the system, it support an experimental and date gathering function in 2-pin sensor composited fuel filter. And then test the temperature, oil pressure, electrical characteristics and oil flow quantity in variable status from - 30 ℃ to + 80 ℃. These can help us to determine the quality and performance of elementary goods.

READABILITY TEST OF RFID TEMPERATURE SENSOR EMBEDDED IN FRESH CONCRETE

  • Julian Kang;Jasdeep Gandhi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.754-757
    • /
    • 2009
  • The current concrete maturity method implemented with temperature sensors requires an extensive wiring, which is not often acceptable on construction site due to harsh working environment. Radio Frequency Identification (RFID) technology appears to provide a solution for the wiring issue because of its ability of sending data wirelessly. An RFID tag integrated with a temperature sensor and placed within fresh concrete may be able to read temperatures of concrete and transmit them to an RFID reader wirelessly in real-time. However the previous research illustrated that the RFID signal gets dispersed in liquid medium. One may speculate then whether RFID signals travel through fresh concrete with high water content. Would the tag's burying depth within fresh concrete affect its readability? The paper presents the preliminary results of our on-going investigation on the readability of RFID tags in concrete against water content and burying depth of tags.

  • PDF

Built-in protection circuit module by using VO2 temperature sensors (VO2 온도센서를 이용한 전원차단 PCM 구성)

  • Song, K.H.;Choi, J.B.;Son, M.W.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Most portable mobile devices employ rechargeable lithium-ion batteries. This lithium-ion battery usually suffers from the possibility of explosion due to heat generation from surrounding atmosphere or internal deficiency during charging or at overuse. To solve these problems, most rechargeable batteries have a built-in protection circuit module (PCM). The resistance of a properly processed $VO_2$ critical temperature sensor (CTS) is changed dramatically at a critical temperature of around $68^{\circ}C$, which can replace some bi-metal, NTC, or PTC sensors embedded in PCM. Such $VO_2$ CTS consumes a very small current at the level of natural discharge. Experimental results showed that this CTS could be applied to a PCM as the PCM could protect the battery while keeping its power consumption at minimum.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Multi-functional (Temperature, Pressure, Humidity) Sensor by MEMS technology (MEMS 기술을 이용한 온도, 압력, 습도 복합 센서)

  • Kwon Sang-wook;Won Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present design and prototyping of a low-cost, integrated multi-functional micro health sensor chip that can be used or embedded in widely consumer devices, such as cell phone and PDA, for monitoring environmental condition including air pressure, temperature and humidity. This research's scope includes basic individual sensor study, architecture for integrating sensors on a chip, fabrication process compatibility and test/evaluation of prototype sensors. The results show that the integrated TPH sensor has good characteristics of ${\pm}\;1\%FS$ of linearity and hysteresis for pressure sensor and temperature sensor and of ${\pm}\;5\%FS$ of linearity and hysteresis But if we use 3rd order approximation for humidity sensor, full scale error becomes much smaller and this will be one of our future study.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Implementation of Real-time Monitoring System for Marine Elevator using Smart Sensors (스마트 센서를 이용한 선박용 승강기 실시간 모니터링 시스템의 구현)

  • Lee, WooJin;Yim, JaeHong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.405-410
    • /
    • 2016
  • Elevator industry is a field that is mechanical, electrical and electronic technology and constantly requires inspection and maintenance considering various applications and various types. Recently, various elevator control and monitoring technologies with IT are developing for elevators on land. But technologies with IT have been hardly done in marine elevator that is consistently assured safety and reliability of life cycle for its parts in poor environment. In this paper, we implemented embedded main controller, floor controller and car controller that meet the requirements and use NMEA network protocol by analyzing home and abroad integrated elevator operation and management systems. Especially, we secured reliability of maintenance by real-time fault diagnosis and control that was implemented with limit switch, gyro sensor, temperature/humidity/barometric pressure sensor and fire detection sensor thinking over the environmental conditions of terrestrial and marine elevator.