• Title/Summary/Keyword: embedded real-time systems

Search Result 499, Processing Time 0.028 seconds

Improving Memory Efficiency of Dynamic Memory Allocators for Real-Time Embedded Systems

  • Lee, Jung-Hee;Yi, Joon-Hwan
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.230-239
    • /
    • 2011
  • Dynamic memory allocators for real-time embedded systems need to fulfill three fundamental requirements: bounded worst-case execution time, fast average execution time, and minimal fragmentation. Since embedded systems generally run continuously during their whole lifetime, fragmentation is one of the most important factors in designing the memory allocator. This paper focuses on minimizing fragmentation while other requirements are still satisfied. To minimize fragmentation, a part of a memory region is segregated by the proposed budgeting method that exploits the memory profile of the given application. The budgeting method can be applied for any existing memory allocators. Experimental results show that the memory efficiency of allocators can be improved by up to 18.85% by using the budgeting method. Its worst-case execution time is analyzed to be bounded.

EXCUTE REAL-TIME PROCESSING IN RTOS ON 8BIT MCU WITH TEMP AND HUMIDITY SENSOR

  • Kim, Ki-Su;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.21-27
    • /
    • 2019
  • Recently, embedded systems have been introduced in various fields such as smart factories, industrial drones, and medical robots. Since sensor data collection and IoT functions for machine learning and big data processing are essential in embedded systems, it is essential to port the operating system that is suitable for the function requirements. However, in embedded systems, it is necessary to separate the hard real-time system, which must process within a fixed time according to service characteristics, and the flexible real-time system, which is more flexible in processing time. It is difficult to port the operating system to a low-performance embedded device such as 8BIT MCU to perform simultaneous real-time. When porting a real-time OS (RTOS) to a low-specification MCU and performing a number of tasks, the performance of the real-time and general processing greatly deteriorates, causing a problem of re-designing the hardware and software if a hard real-time system is required for an operating system ported to a low-performance MCU such as an 8BIT MCU. Research on the technology that can process real-time processing system requirements on RTOS (ported in low-performance MCU) is needed.

Real-Time Task Scheduling Algorithm using a Multi-Dimensional Methodology for Embedded Real-Time Operating Systems (내장형 실시간 운영체제에서 다차원 기법을 이용한 실시간 태스크 스케줄링 알고리즘)

  • Cho, Moon-Haeng;Lim, Jae-Seok;Lee, Jin-Wook;Kim, Joo-Man;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • In recent years, embedded systems such as cellular phones, Portable Multimedia Player, intelligent appliance, automobile engine control are reshaping the way people live, work, and play. Thereby, services application to guarantee various requirements of users become increasingly sophisticated and complicated, such embedded computing platforms use real-time operating systems (RTOSs) with time determinism. These RTOSs must not only provide predictable services but must also be efficient and small in size. Kernel services should also be deterministic by specifying how long each service call will take to execute. Having this information allows the application designers to better plan their real-time application software so as not to miss the deadline of each task. In this paper, we present the complete generalized real-time scheduling algorithm using multi-dimensional methodology to determine the highest priority in the ready list with 2r levels of priorities in a constant time without additional memory overhead.

Non-Preemptive Fixed Priority Scheduling for Design of Real-Time Embedded Systems (실시간 내장형 시스템의 설계를 위할 비선점형 고정우선순위 스케줄링)

  • Park, Moon-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2009
  • Embedded systems widely used in ubiquitous environments usually employ an event-driven programming model instead of thread-based programming model in order to create a more robust system that uses less memory. However, as the software for embedded systems becomes more complex, it becomes hard to program as a single event handler using the event-driven programming model. This paper discusses the implementation of non-preemptive real-time scheduling theory for the design of embedded systems. To this end, we present an efficient schedulability test method for a given non-preemptive task set using a sufficient condition. This paper also shows that the notion of sub-tasks in embedded systems can overcome the problem of low utilization that is a main drawback of non-preemptive scheduling.

An Efficient Voltage Scheduling for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실시간 시스템에 대한 효율적인 전압 스케쥴링)

  • Lee, Jae-Dong;Hur, Jung-Youn
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.273-283
    • /
    • 2008
  • Many embedded real-time systems have adopted processors supported with dynamic voltage scaling(DVS) recently. Power is one of the important metrics for optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor supported with DVS. In this paper, we propose heuristic algorithms to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. The previous algorithm has a following constraint : given the tasks are ordered in a nondecreasing order of their relative deadline, the task slowdown factors computed are in a nonincreasing order. In this paper, we relax the constraint and propose heuristic algorithms which have the same time complexity that previous algorithm has and can save more energy. Experimental results show that the proposed algorithms are energy efficient.

Real-time Task Scheduling exploiting Battery Characteristics in Sensor Networks (센서 네트워크에서 배터리 특성을 고려한 실시간 태스크 스케쥴링)

  • Hong Seungki;Kim Daeyoung;Kim Jae-eon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.430-432
    • /
    • 2005
  • 센서 네트워크를 구성하는 대부분의 센서 노드들은 제한된 용량의 배터리로부터 전력을 공급받는다. 그러한 센서 노드들의 수명은 장착된 배터리의 수명에 의해 결정되기 때문에 배터리의 수명을 최대화시키는 것이 센서 네트워크 응용 설계에서 중요한 고려 사항이 된다. 한편, 배터리는 전력 소모 패턴에 따라 전지가 제공할 수 있는 총 용량이 일정하지 않으며 방전이 진행됨에 따라서 비선형적인 특성을 보이기 때문에, 배터리의 수명은 연결된 로드의 특성에 따라서 항상 다르게 결정된다. 본 논문에서는 그러한 배터리의 방전 특성을 고려한 실시간 태스크 스케줄링 알고리즘을 제안한다. 실험을 통하여 얻은 결과는 제안된 배터리의 특성을 고려한 태스크 스케줄링 알고리즘이 그렇지 않은 태스크 스케줄링 알고리즘에 비해 배터리 수명을 향상시킴을 보인다.

  • PDF

Robust Data, Event, and Privacy Services in Real-Time Embedded Sensor Network Systems (실시간 임베디드 센서 네트워크 시스템에서 강건한 데이터, 이벤트 및 프라이버시 서비스 기술)

  • Jung, Kang-Soo;Kapitanova, Krasimira;Son, Sang-H.;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.324-332
    • /
    • 2010
  • The majority of event detection in real-time embedded sensor network systems is based on data fusion that uses noisy sensor data collected from complicated real-world environments. Current research has produced several excellent low-level mechanisms to collect sensor data and perform aggregation. However, solutions that enable these systems to provide real-time data processing using readings from heterogeneous sensors and subsequently detect complex events of interest in real-time fashion need further research. We are developing real-time event detection approaches which allow light-weight data fusion and do not require significant computing resources. Underlying the event detection framework is a collection of real-time monitoring and fusion mechanisms that are invoked upon the arrival of sensor data. The combination of these mechanisms and the framework has the potential to significantly improve the timeliness and reduce the resource requirements of embedded sensor networks. In addition to that, we discuss about a privacy that is foundation technique for trusted embedded sensor network system and explain anonymization technique to ensure privacy.

Time-Efficient Voltage Scheduling Algorithms for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실기간 시스템에서 시간-효율적인 전압 스케쥴링 알고리즘)

  • Lee, Jae-Dong;Kim, Jung-Jong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • Many embedded real - lime systems have adopted processors supported with dynamic voltage scal-ing(DVS) recently. Power is one of the important metrics for Optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor sup-ported with DVS. In this paper, we improved the previous algorithm at a point of view of time complexity to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. We grasped the properties of the previous algorithm having $O(n^{2})$ time complexity through mathematical analysis and s simulation. Using its properties we proposed the improved algorithms with O(nlogn) and O(n) time complexity which have the same performance as the previous algorithm has.

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.