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Dynamic memory allocators for real-time embedded 
systems need to fulfill three fundamental requirements: 
bounded worst-case execution time, fast average execution 
time, and minimal fragmentation. Since embedded 
systems generally run continuously during their whole 
lifetime, fragmentation is one of the most important 
factors in designing the memory allocator. This paper 
focuses on minimizing fragmentation while other 
requirements are still satisfied. To minimize fragmentation, 
a part of a memory region is segregated by the proposed 
budgeting method that exploits the memory profile of the 
given application. The budgeting method can be applied 
for any existing memory allocators. Experimental results 
show that the memory efficiency of allocators can be 
improved by up to 18.85% by using the budgeting method. 
Its worst-case execution time is analyzed to be bounded. 
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I. Introduction 

There are three important requirements for a dynamic 
memory allocator to be used for real-time systems [1], [2]: 
bounded worst-case execution time, fast average execution 
time, and minimal fragmentation. In this paper, we focus on 
minimizing fragmentation while the other requirements are still 
satisfied. Memory fragmentation is a serious problem for real-
time systems that run continuously during their whole lifetime 
[3]. 

Since real-time embedded systems generally run with fixed 
applications, there are objects whose type can be determined a 
priori while the number of objects to be alive in memory is 
unpredictable. An object, in this sense, is a kind of structured 
data item, such as a Pascal record, C struct, or C++ object [4]. 
Based on the fact that the types of objects to be stored in the 
heap storage are predetermined, a memory allocator can be 
optimized for better memory efficiency. 

This paper proposes a budgeting method that divides the 
heap storage into two parts, dedicated and shared, and 
reduces fragmentation by budgeting dedicated storage for 
predetermined objects. To budget the optimum size of 
dedicated storage, the budgeting method utilizes the given 
memory profile that traces when and which object is 
allocated and freed. The experimental results show that the 
proposed method improves the memory efficiency of state-
of-the-art allocators in [3], [5], and [6] by up to 18.85% on 
average. 

Section II reviews the related works. Sections III and IV 
describe the budgeted allocator and the budgeting method, 
respectively. Section V shows the experimental results to prove 
the effectiveness of this method and provides an analysis of its 
costs. Finally, section VI provides the conclusion. 
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II. Related Work 

While dynamic memory allocators are prevalently used in 
most software, they are rarely adopted in real-time systems due 
to their unpredictable execution time. A half-fit allocator [7] 
with constant execution time was proposed but suffers from 
high fragmentation [1]. Recently, a two-level segregated-fit 
(TLSF) allocator [3] was reported to achieve both bounded 
execution time and low fragmentation. 

Minimizing fragmentation is becoming more important 
since the number of real-time applications requiring a large 
amount of memory is increasing, such as video streaming, 
virtual reality, scientific data gathering, and data acquisition [1].  

In order to reduce fragmentation, a hybrid allocator [8] was 
proposed which applies different management algorithms 
depending on the size of objects. Similarly, the Lea allocator 
[9] uses different algorithms depending on the size of requested 
objects, such as block cache, segregated list, and first-fit. Static 
allocators do not cause fragmentation [10] because they 
allocate a fixed-size memory region immediately after the 
system initialization and do not allocate or free memory 
regions at run time. However, this may also lead to wastage of 
memory because memory must be allocated for the worst case. 

Fragmentation can be reduced by improving the locality. 
Improving the locality can be accomplished by analyzing the 
lifetime [11], freeing all the objects in a region at the same time 
[12], or caching frequently used objects [13]. Berger and others 
[9] enhanced memory efficiency by providing deletion of 
individual objects as well as a whole region. 

Existing techniques for reducing fragmentation [8], [9], [11]-
[13], however, cannot guarantee bounded execution time. The 
budgeting method proposed in this paper reduces 
fragmentation of any existing allocator if the memory profile of 
objects is provided. In this case, the execution time of the 
allocator is still bounded.  

The budgeting method reduces fragmentation by providing 
dedicated regions for each object. The concept of a dedicated 
region is similar to that of a reservation [1], [14]. The technique 
in [1] assumes each task reserves its memory to analyze 
schedulability of tasks rather than to reduce fragmentation. The 
method in [14] uses reservation to reduce execution time and 
power consumption. 

The slab allocator [13] also uses a similar concept of 
dedicating regions, named slabs, to certain objects. The size of 
a slab is a multiple of a page size, and each slab is dedicated to 
a type of object. So, internal fragmentation can still be 
significant in the dedicated region if a small number of such 
objects is allocated. On the other hand, there is no internal 
fragmentation in the dedicated region of the proposed allocator 
because the size of the dedicated region can be an arbitrary  

 

Fig. 1. Composition of heap storage. 
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number. The main contribution of our paper is to provide a 
systematic way to determine the size of the dedicated region by 
analyzing memory traces a priori. 

III. Budgeted Allocator 

A budgeted allocator comprises a dedicated (region) 
allocator and a shared (region) allocator. Accordingly, the 
heap storage is divided into two parts: the dedicated region and 
shared region as shown in Fig. 1. The dedicated region is a 
segregated storage [4] for predetermined objects Oi of size Si 
where Si ≠ Sj (i ≠ j) for 1 ≤ i, j ≤ n. Note that different objects a 
and b can be Oi if their sizes are the same as Si. The dedicated 
region for Oi is composed of Ni buckets that are Si-sized and 
dynamically managed. The shared region is a normal storage 
that is managed by a shared allocator. 

The budgeting method improves the memory efficiency of 
the shared allocator by using the dedicated region for 
predetermined objects. The exact segregated fit allocator [4] is 
the dedicated allocator, and any proper existing memory 
allocator can be used as a shared allocator. The contribution of 
the proposed method is to improve memory efficiency by 
sizing (or budgeting) the dedicated region well. 

Object Oi is first allocated to the dedicated region by the 
dedicated allocator. If there is no free bucket of the exact size Si 
in the dedicated region, Oi is allocated to the shared region 
rather than allocated to a larger bucket in the dedicated region. 
In this way, no fragmentation is possible by the dedicated 
allocator. Any other object Os where s > n is always allocated to 
the shared region by the shared allocator. 

Figure 2 shows the pseudocode of the budgeted allocator. 
Note that Si and Ni for 1 ≤ i ≤ n are predetermined. Object size 
Si is provided by the user, and Ni is determined by the 
budgeting method described in section IV. Free buckets of size 
Si are managed by a stack STi. So, there are n stacks {ST1, 
ST2,…, STn} for the free buckets. 

The function init takes two arguments, Si and Ni, and reserves 
Ni buckets of size Si by a low-level allocator. The low-level 
allocator is a type of system call to increase the data space of 
the program with respect to the requested size. For example, 
library routine sbrk [4] in C behaves as a low-level allocator.  
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Fig. 2. Pseudocode of budgeted allocator. 

data structure for i-th object in the dedicated region 
STi  // Stack for tracking the free list of Si-sized buckets 
Ai

start // Start address of Si-sized buckets 
Ai

end // End address of Si-sized buckets 
Si // Size of one i-th object 

end data structure 
 
function init(Si, Ni) 

// Si denotes the size of objects Oi in the dedicated region 
// Ni denotes the number of dedicated buckets for Oi 
Low-level allocator allocates Ni buckets of size Si 
Create a data structure 
Push Ni buckets into STi 
Store the start address Ai

start of Si-sized buckets 
Store the end address Ai

end of Si-sized buckets 
Store Si 
return i; // the index of Oi 

end function 
 
function malloc(i) 

// i denotes the index of the requested object 
if STi is not empty 

remove and return a bucket from the top of STi 
else 

call the shared allocator for a region of size Si 
return the result 

end if 
end function 
 
function free(b, i) 

// b denotes the pointer of the bucket to be freed 
// i denotes the index of the requested object 
If Ai

start≤b≤Ai
end 

add bucket b to the top of STi 
else 

return b to the shared storage allocator 
end if 

end function 
 
function main // example 

i0 = init(S0, N0) 
i1 = init(S1, N1) 
for x=0 to 100 

O0 = malloc(i0) 
O1 = malloc(i1) 
process(O0, O1, x) 
free(O0, i0) 
free(O1, i1) 

end for 
end function 

 
 
Most dynamic memory allocators reserve memory regions to 
be managed by themselves using a low-level allocator. Then, it 
creates a data structure for the requested object and fills each 
field. The data structure consists of a stack STi, start and end 
addresses of Ni buckets, and the size Si of the object. The start 
and the end addresses of the buckets are needed to determine 
whether a bucket to be freed belongs to the dedicated region or 

the shared region when the function free is called. The size of 
the object is stored for requesting a region by the shared 
allocator when there are no more available buckets in the 
dedicated region. Finally, it returns the index of the object. 

The function malloc returns a bucket from the top of stack STi 
if there remains a free bucket. Otherwise, it passes the request to 
the shared allocator and returns a part of the shared region. 

The function free determines if the bucket to be freed 
belongs to the dedicated region by comparing the pointer of the 
bucket with the start and the end addresses of Si-sized buckets. 
If the bucket to be freed belongs to the Si-sized buckets, it is 
added into STi. Otherwise, it is passed to the shared allocator to 
be freed. 

The caller should call the function init for each object and 
store its index for calling the function malloc and free. This 
interface is different from that of traditional memory allocators. 
We chose this interface for real-time applications by improving 
the average execution time and by making the worst case 
execution time bounded. 

To keep the same interface of traditional memory allocators, 
the function free needs to have only one argument b. Because 
the other argument i is not provided anymore, it requires a 
linear search which makes the execution time longer and 
unpredictable. So, the index i is provided for function free so 
that free can be done in a constant time. 

Buckets in the dedicated region can be allocated and freed 
within a constant time. For buckets in the shared region, their 
allocation and de-allocation time is bounded as long as the 
worst cast execution time of the shared allocator is bounded. 
This means that the budgeting method can be applied to 
memory allocators for real-time applications whose worst case 
execution time needs to be bounded. 

IV. Budgeting Method 

This section describes how to determine Ni, which is the 
number of buckets dedicated to Oi in the dedicated region. 
Three solutions are available for the determination of Ni: user-
driven, compiler-driven, and profile-driven solutions [11]. The 
user-driven solution may suffer from human errors [11]. Lack 
of information of run time behaviors inhibits applying the 
compiler-driven solution to the budgeting method. Thus, we 
selected the profile-driven solution, which is widely used for 
customizing memory allocators [9], [11], [12], [15]. 

The memory profile Pi(t) is obtained by post-processing the 
memory trace. The number of buckets in use of size Si at time t 
is denoted by Pi(t). To generate the trace, the application is 
compiled and run with a conventional general-purpose 
allocator that contains augmented codes to generate the trace. 
In the allocation function (for example, malloc), the requested 
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size and the returned address are traced with a timestamp. The 
timestamp is only used for ordering the trace. In the free 
function (for example, free) the address to be freed is traced 
with a timestamp. Then, Pi(t) is incremented by 1 if Oi is 
allocated at time t and decremented by 1 if Oi is freed. 

1. Problem Formulation 

The main objective of determining Ni is to minimize the size 
of the heap storage. At first, we formulate the required size R(t) 
of storage at time t for any memory allocator in a general form 
by 

 ( ) ( ) ( ) ( )R t U t F t H t= + + ,             (1) 

where U(t) is the amount of buckets in use, F(t) is the internal 
and external fragmentation, and H(t) is the overhead due to 
memory allocators. Here, the buckets in use refer to the 
allocated or reserved buckets for one object, which cannot be 
used for other objects. The internal fragmentation occurs in the 
unused region within a bucket because the allocated bucket is 
larger than the requested size, and the external fragmentation 
occurs due to the free buckets that cannot be allocated because 
their sizes are smaller than the requested size [15]. The 
overhead refers to the memory region that is used, not by the 
requestor, but by the allocator to manage buckets. 

The size of the heap storage should be greater than the 
maximum Rmax of R(t). In order to minimize the size of the 
heap storage, Rmax should be minimized. Overhead H(t) can be 
ignored because it does not significantly affect to Rmax. 
Fragmentation F(t) cannot be estimated accurately without 
simulation because it depends mostly on the scenario. Equation 
(2) shows U(t) in a different form: 

 ( ) ( ( ))i i
i

U t S P t= ×∑ .             (2) 

Recall that Si is the size of object Oi, and Pi(t) is the number 
of Si-sized buckets allocated by Oi’s. 

Now, we consider (1) for our budgeted allocator. At first, no 
fragmentation occurs in the dedicated region. Therefore, it is 
very likely that F(t) proportionally decreases as Ni increases. In 
the meantime, the maximum value Umax of U(t) may increase, 
which we show later. For budgeted allocators, (1) is rewritten 
as 

 ( ) ( ) ( ) ( )B B B BR t U t F t H t= + + .        (3) 

The superscript B denotes that each variable is for the 
budgeted allocator. Then, UB(t) can be written as 

  ( ) ( MAX( , ( )))B
i i i

i

U t S N P t= ×∑ ,        (4) 

where MAX(A, B) denotes the larger value between A and B. 

This equation implies that UB(t) is larger than U(t) if Ni > Pi(t) 
for each i because other objects cannot use the Si-sized buckets 
in the dedicated region. Note that Pi(t) is independent of Pj(t) 
where i ≠ j. Our goal is to minimize Rmax while maintaining 
UB

max smaller than Umax. That is, 
 UB

max ≤ Umax.                  (5) 
Note that if Ni > Pi, max, (Ni – Pi, max) buckets in the dedicated 

region are useless where Pi, max is the maximum of Pi(t). So the 
following condition should also be enforced: 

 Ni ≤ Pi, max ,  for every i .                (6) 
In addition, the dedicated region should be maximized to 

minimize FB(t). As the size of the dedicated region is 

 ( )i i
i

D S N= ×∑ .                (7) 

D should be maximized while UB
max ≤ Umax from (5) and  

Ni ≤ Pi,max from (6) for every i. In summary, the problem is 
defined as the following. 

Problem Definition. Given Si and Pi(t), find Ni such that D 
is maximized while UB

max ≤ Umax and Ni ≤ Pi,max for every i, 
where  

( ),  ( ) ( ( )),i i i i
i i

D S N U t S P t= × = ×∑ ∑ and 

( ) ( MAX( , ( ))).B
i i i

i

U t S N P t= ×∑  

An illustrative example is shown in Fig. 3. In Fig. 3(a) and  
 

 

Fig. 3. Illustrative example of U(t) and UB(t). 
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Fig. 3(b), U(t) and UB(t) are depicted, respectively, where only 
N1 is non-zero and N2 and N3 are zero. As U(t) is a summation 
of Si × Pi(t) for every i, the graph has split regions. The region 
due to S1 × P1(t) is the darkest one. Note that the height of the 
darkest region in UB(t) is always greater than S1 × N1. In this 
example, N1 is set to P1(t2) when U(t2) is Umax. This selection of 
N1 does not cause UB(t2) increase in Fig. 3(b). However, it 
causes UB(t1) to exceed Umax, which means that UB

max becomes 
greater than Umax. To maintain UB

max smaller than Umax, N1 
should be set to smaller value so that UB(t) does not exceed 
Umax all the time. An algorithm to compute Ni satisfying (5) is 
presented in the following subsection. 

2. Solution 

This problem cannot be solved within the polynomial time 
by an exhaustive algorithm. From (6), Ni can be any value from 
0 to Pi,max, and we need to explore the combination of      
{N1, N2,…, Nn} that makes the size of the dedicated region 
largest while maintaining UB

max ≤ Umax. Consequently, the  
complexity is proportional to ,maxi

i

P∏ . Such algorithms can  

hardly be applied when n or Pi,max is large. As a practical 
solution, we propose a greedy algorithm whose pseudocode is 
shown in Fig. 4. This algorithm can solve the problem within 
polynomial time as its complexity is proportional to n. 

Every time t, following (8) should be satisfied: 

 max( )BU t U≤ .                    (8) 

Inserting (4) to (8) becomes 

 max( MAX( , ( ))) ,i i i
i

S N P t U× ≤∑           (9) 

for every i and t. A sub-optimum Ni can be computed by 
assuming that Nj (i ≠ j) are fixed a priori. The following 
assumptions are used to compute sub-optimum Ni: 

1) Si is ordered such that Si ≥ Sj if i < j. 
2) Ni is computed by assuming that Nk is precomputed and  

Nj = 0 where k < i < j. 
For N1, assume that Nj (1 < j ≤ n) is zero. Then, (9) can be 

rewritten as 

 1 1 1 max
2

MAX( , ( )) ( ( ))
n

j j
j

S N P t U S P t
=

× ≤ − ×∑ .    (10) 

Note that every variable except for N1 is known. If N1 ≤ P1(t) 
for every t, (10) becomes 

 1 1 max
2

( ) ( ( ))
n

j j
j

S P t U S P t
=

× ≤ − ×∑ ,       (11) 

that is always true by the definition of Umax. In other words, if  

 

Fig. 4. Pseudocode of greedy algorithm. 
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( ) ( MAX( , ( ))) ( ( ))
i n
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N1 ≤ P1(t) for every t, it is always true that UB

max ≤ Umax. 
However, if N1 > P1(t) at a time t, from (10) 

 1 1 max 1
2

( ( )) ( )
n

j j
j

S N U S P t M t
=

⎧ ⎫⎪ ⎪× ≤ − × =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ .      (12) 

Note that the right hand side is denoted by M1(t) that is a 
function of t. The semantics of M1(t) is the amount of memory 
region that can be reserved for the object O1 at time t. That is, 

 1
1

1

( )M t
N

S
≤ ,                 (13) 

for every t. Therefore, if 

 N1 ≤ P1(t)  or 1
1 1

1

( )
( )

M t
P t N

S
< ≤ ,        (14) 

for every t, UB
max ≤ Umax. In other words, 

 1, min
1

1

M
N

S
 ≤ ,                 (15) 

where M1,min is the minimum of M1(t). Because we are looking 
for the largest N1 that satisfies UB

max ≤ Umax and N1 ≤ P1,max, 

1, min
1 1, max

1
MIN , .

M
N P

S
 

 

⎛ ⎞⎢ ⎥
= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

        (16) 

In general, the solution is given as the following. 
Solution. The number Ni of dedicated storages for i-th object 

is 

, min
, maxMIN , ,i

i i
i

M
N P

S
 

 

⎛ ⎞⎢ ⎥
= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

where 
1

max
1 1

( ) ( MAX( , ( ))) ( ( )).
i n

i j j j j j
j j i

M t U S N P t S P t
−

= = +

= − × − ×∑ ∑  

Our experimental results in section V show that the proposed  
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Fig. 5. Four temporal distributions TD = {tds, tdn, tdo, tdr} of 
objects over time considered in this experiment. 
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algorithm is much faster than the exhaustive search algorithm 
and the results of {N1, N2,…, Nn} are close to the optimum 
values. 

V. Experiments 

The methodology used for the experiments is explained first, 
and the impacts of the proposed budgeting methods on 
memory efficiencies are presented. Various known memory 
allocators have been used for the experiments. In addition, to 
show the efficiency of the proposed budgeting algorithms, the 
execution time is compared to the exhaustive search algorithm. 

Finally, the overhead of the budgeted method is measured by 
the execution time and code size of allocators with and without 
budgeting methods. 

The execution time is measured by using an electronic 
system level simulator, Carbon Design System’s SoC Designer 
[16], with a cycle-accurate ARM926 model. In order to 
minimize nondeterministic behaviors, all the instructions and 
data were stored on a static random access memory while the 
caches were turned off. The code size of each allocator is 
measured after compiling them with ARM RVCT2.2 [17]. 

1. Methodology 

The amount of fragmentation depends largely on the 
scenarios. Providing an appropriate scenario is crucial to 
experiments of fragmentation [7]. There are mainly two 
approaches to generate scenarios: standard benchmark 
applications and synthetic workload models [3]. As mentioned 
in [3], the requirements of real-time applications are different 
from those of the standard benchmark applications. Real-time 
applications should run continuously during their lifetime 
responding to unpredictable inputs. It is the reason why 
synthetic workload models are adopted by many studies on 
memory allocators of real-time applications [1], [3], [7], [18]. 

Four temporal distributions of objects shown in Fig. 5 with 
five object configurations shown in Table 1 are considered in 
our experiments. More detail discussions on Fig. 5 and Table 1 
are given in the following paragraphs. A scenario is composed 
of a temporal distribution of objects with an object 
configuration, and thus there are twenty scenarios under 
consideration. Our methodology is similar to that in [7] but 
refined according to the characteristics of real-time applications 
and algorithms used by allocators. 

Figure 5 illustrates four temporal distributions TD = {tds, tdn, 
tdo, tdr} of objects over time. Figure 5(a) shows the 
synchronized temporal distribution tds where the amount of 
memory required for each object reaches the peak at the same 
time. This scenario happens when multiple objects are 
allocated in a single task. If the sizes of each object and 
memory profile are known a priori, the simple segregated fit 
allocator performs most efficiently for tds because there is no 
chance to share space among objects at the peak time. Figure 
5(b) depicts another extreme case, non-overlapped distribution 
tdn. There are no overlapped intervals among lifetimes of 
objects. Thus, the fragmentation is likely to be lower than other 
distributions because only one type of object is used during a 
certain time. This scenario illustrates a situation where multiple 
independent tasks are running concurrently in a system, and the 
lifetime of objects is within the task. The most realistic scenario 
would be the overlapped distribution tdo shown in Fig. 5(c). 
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Table 1. Five object configurations OC = {oc2l, oc2s, ocl, ocs, ocmix} 
with eight objects O1 through O8 and their size S1 through S8.

Object size 
Name 

2k large 
(oc2l) 

2k small
(oc2s) 

Arbitrary 
large (ocl) 

Arbitrary 
small (ocs)

Mixed
(ocmix)

S1 131,072 1,024 91,936 2,952 80,176

S2 65,536 512 80,176 1,978 65,536

S3 32,768 256 64,032 1,040 32,768

S4 16,384 128 49,472 996 19,008

S5 8,192 64 35,432 384 2,952

S6 4,096 32 19,008 192 1,024

S7 2,048 16 17,424 40 40

S8 1,024 8 5,184 10 10

 

 
There are some overlapped and some non-overlapped intervals 
among lifetimes. This scenario may happen either in using 
multiple objects in a single task or in using objects across 
multiple tasks. Figure 5(d) shows a purely random scenario tdr. 

Table 1 shows five object configurations OC = {oc2l, oc2s, ocl, 
ocs, ocmix} characterized by the number of objects and their size. 
For simplicity, every configuration has eight objects, O1 
through O8. The size Si of each object Oi was selected to 
stimulate all the aspects of nine dynamic allocators. The nine 
dynamic allocators consist of the six allocators in [6] named 
from test 1 to test 6, the Kingsley (DJGPP in [6]), the Lea [5], 
and TLSF [3]. TLSF is the only memory allocator whose 
execution time is bounded. Although this paper focuses on 
real-time applications, the budgeting method can be applied to 
any memory allocators in any applications as long as their 
memory profile is provided. Eight other allocators are included 
to show that the budgeting method can improve memory 
efficiency of allocators whose execution time is not bounded. 

Allocators in test 1 through test 3 always allocate 2k-sized 
buckets. Kingsley and Lea allocators allocate 2k-sized buckets 
for small objects. They are likely to be efficient if every Si is  
2k-sized. Thus, we use both object configurations with only  
2k-sized objects, oc2l and oc2s, and without 2k-sized objects, ocl 
and ocs. Then, we divided them into those with larger than 
1,024 bytes and those smaller than 1,024 bytes, that is, oc2l and 
oc2s, respectively. 

All the allocators, except in test 1 and the TLSF allocator, 
allocate an additional memory chunk C from the low-level 
allocator if there is no more room. Thus, the relative size 
between Si and C affects their memory efficiency measured by 
the low-level allocator. In this experiment, a 1,024 byte 
memory was used for memory chunk C. 

To generate each scenario, we assumed periodic tasks. It 
should be noticed that periodic tasks were assumed only for the 

convenience of scenario generation. The budgeting method 
does not need to assume periodic tasks. One task corresponds 
to one object, which means that a task allocates and frees one 
object during its active interval. An active interval of each task 
was randomly selected and corresponding object were 
randomly allocated and freed. By adjusting the distribution of 
the active interval, periods of tasks, and intervals among tasks  
all of the scenarios were generated. The synchronized 
distribution tds was set to reach peak at the same time forcefully. 
The maximum number Pi, max of objects requested for the i-th 
object Oi was set to 100 for every i. 

Finally, we added the mixed object configuration. The four 
other configurations {oc2l, oc2s, ocl, ocs} were chosen to 
stimulate all the aspects of the nine allocators. However, these 
are less realistic. For instance, it is rare for an application to use 
only 2k-sized objects such as oc2l and oc2s. The mixed 
configuration ocmix was made up by mixing two sizes from 
{oc2l, oc2s, ocl, ocs}.  

The memory efficiency was measured by comparing the 
maximum size Rmax of R(t) for different memory allocators. If 
an allocator A has smaller Rmax than another allocator B does, A 
has higher memory efficiency than B because A requires 
smaller memory for the same application. The maximum 
amount of allocated regions by the low-level allocator was 
measured as Rmax. TLSF was an exceptional case because it 
simply fails the system if the pre-requested storage size is not. 
For TLSF, Rmax was measured by trial and errors. That is, each 
scenario was iteratively simulated with large heap storage at the 
beginning, and then the size of the storage was reduced until 
the TLSF allocator failed to respond to a memory request. 

2. Experimental Results 

The budgeting methods are applied to the twenty scenarios 
defined in the previous subsection. The memory efficiency is 
measured by the reduction rate of the Rmax, the maximum size 
of the required memory. Recall that each ma of nine previously 
published allocators is compared against the budgeted allocator 
employing ma as the shared allocator. For each scenario and 
each memory allocator, the reduction rate of Rmax is computed. 
That is, (RB

max/Rmax) × 100 is computed where RB
max denotes 

the maximum size of required memory after the budgeting 
method is applied. Then, the average reduction rate of Rmax for 
nine memory allocators is computed for each scenario. 

Table 2 shows the average reduction rate of Rmax for the 
twenty scenarios. Except one scenario {tdn, ocl}, the budgeted 
allocator achieves up to 18% of memory efficiency. More 
detail analysis follows. 

As shown in Table 2, the improvement in memory efficiency 
mostly depends on the temporal distribution TD rather than 
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Table 2. Average reduction rate of Rmax for twenty scenarios. 

Scenario 
Synchronized 

(tds) 
Non-overlapped 

(tdn) 
Overlapped

(tdo) 
Random

(tdr) 
2k large (oc2l) 10.74% 2.71% 5.34% 8.31%

2k small (oc2s) 18.85% 3.21% 7.56% 11.76%
Arbitrary 
large (ocl) 

14.55% –1.37% 4.46% 8.43%

Arbitrary 
small (ocs) 

14.52% 2.00% 8.48% 11.59%

Mixed (ocmix) 15.44% 0.30% 8.20% 13.39%

 

object configuration OC. So, in Fig. 6, we depict the memory 
efficiency of different memory allocators for various temporal 
distributions with mixed object configuration only, that is, 
scenarios {tds, ocmix}, {tdn, ocmix}, {tdo, ocmix}, and {tdr, ocmix}. 
For different scenarios, Ni’s need to be recalculated. Thus, the 
four scenarios shown in Fig. 6 use different Ni’s. While each 
cell in Table 2 shows the average reduction rate of nine 
memory allocators for the given scenario, Fig. 6 shows Rmax 
and RB

max of nine dynamic allocators for the given scenario. 
The vertical axis indicates the size of Rmax and RB

max in bytes.  
Figure 6(a) shows the result for scenario {tds, ocmix}. Our 

budgeting algorithm results show that Ni = Pi, max, which means 
that only the dedicated allocator should be used, and the shared 
allocator should be never used. That is the reason why the 
RB

max of every allocator is same. As a result, memory efficiency 
was improved by 15.44% on average. We also obtained similar 
results when the object configurations were changed. 

Figure 6(b) shows the result for scenario {tdn, ocmix}. Our 
budgeting algorithm results show that most Ni’s are zero. This 
is one of the worst cases from the viewpoint of the budgeting 
method because there is little fragmentation. This case was 
chosen to illustrate the limitation of the proposed budgeting 
method. Since the budgeting method improves the memory 
efficiency by reducing fragmentation, it hardly works when 
there is little fragmentation. Moreover, it may even worsen the 
efficiency as illustrated in Fig. 3 (see the results of test 2 in Fig. 
6(b)). The budgeting method increases the possibility that the 
fragmentation is reduced but cannot guarantee it. That is also 
the reason why the memory efficiency worsened for the 
scenario {tdn, ocl} with arbitrary large objects shown in Table 2. 

Figures 6(c) and 6(d) show the results for scenarios {tdo, 
ocmix} and {tdr, ocmix}, respectively. The budgeting method 
improves memory efficiencies by 8.20% and 13.39%, 
respectively, on average. 

Now, we demonstrate the efficiency of the proposed greedy 
algorithms that compute the size of dedicated regions. Table 3 
shows the comparison results of the exhaustive algorithm and  

 

Fig. 6. Comparison of memory efficiency for different temporal 
distributions with mixed object configuration ocmix. 
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(a) Synchronized {tds, ocmix} 
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(b) Non-overlapped {tdn, ocmix} 
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(c) Overlapped {tdo, ocmix} 
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(d) Random {tdr, ocmix} 

 
 
the proposed greedy algorithm. The execution time speedup is 
the execution time ratio of the exhaustive algorithm to the 
proposed greedy one. The greedy algorithm is up to 15,000 
times faster than the exhaustive algorithm, while it finds near 
optimum values of Ni that differ at most 0.2% from the 
optimum values in our experiments. Note that if the number n  
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Table 3. Comparison of budgeting algorithms in execution time and
accuracy. 

n 4 4 5 

Pi,max 10 20 10 

Exhaustive 7,391 33,781 157,671 

Greedy 7 8 10 Execution 
time (ms) 

Speedup 1,056 4,223 15,767 

Exhaustive 15,520 34,688 16,016 

Greedy 15,520 34,688 15,984 ( )i i
i

S N×∑  

Ratio 
(accuracy) 100% 100% 99.8% 

 

Fig. 7. Execution time overhead due to budgeting method. 
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of objects with different sizes and Pi, max are increasing, the 
execution time of the exhaustive algorithm increases 
exponentially. Considering that most of real-time systems use  
n >> 5, the exhaustive algorithm would be infeasible for such a 
large number of objects. 

Figure 7 shows the cost of the budgeting method. The 
average execution time tends to increase as shown in Fig. 7. On 
average, the execution time is increased by 1.66%. This is 
because budgeted allocators need to check first if there is a free 
bucket in the dedicated region. Considering real-time 
applications, in the case of the TLSF allocator, its average 
increment in execution time is 9.36%.  

Whether this overhead is significant or negligible depends on 
the application. Because the fragmentation is also highly 
dependent on the application, the reduction rate of the required 
memory size varies with the application, too. The designer 
should make a decision considering the trade-off between the 
memory size and the average execution time. However, the 
proposed method provides a way to enhance memory 
efficiency with less overhead than using more efficient but 
more complicated, slower, and not WCET-bounded memory 
allocators. 

The code size of the budgeted allocator inevitably increases 
because it is composed of two allocators. However, the amount 
of the increment was measured as 548 bytes. That is negligibly 
small considering the memory requirement of emerging real-
time applications, such as video streaming, virtual reality, 
scientific data gathering, and data acquisition. Because the 
budgeted allocator achieves higher memory efficiency than 
other allocators even with the higher code size overhead, it is 
clear that the budgeted allocator improves fragmentation. 

VI. Conclusion 

A budgeting method of memory regions was proposed to 
enhance memory efficiency while real-time requirements on 
execution time are satisfied. To minimize fragmentation, the 
budgeted allocator exploits a dedicated storage for 
predetermined sizes of objects. To determine the number of 
dedicated buckets for each object, a formulation and its 
heuristic solution were presented. The budgeting method was 
applied to nine memory allocators. Our experiments show that 
the budgeted allocators achieved improvements in memory 
efficiency by up to 18.85%. We also designed budgeted 
allocators such that the worst-case execution time of the 
budgeted allocator is bounded as long as the shared allocator is 
bounded. Although we focus on real-time applications in this 
paper, the budgeting method can benefit any applications 
whose memory efficiency needs to be improved if its memory 
profile is provided. 
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