
230 Junghee Lee and Joonhwan Yi © 2011 ETRI Journal, Volume 33, Number 2, April 2011

Dynamic memory allocators for real-time embedded
systems need to fulfill three fundamental requirements:
bounded worst-case execution time, fast average execution
time, and minimal fragmentation. Since embedded
systems generally run continuously during their whole
lifetime, fragmentation is one of the most important
factors in designing the memory allocator. This paper
focuses on minimizing fragmentation while other
requirements are still satisfied. To minimize fragmentation,
a part of a memory region is segregated by the proposed
budgeting method that exploits the memory profile of the
given application. The budgeting method can be applied
for any existing memory allocators. Experimental results
show that the memory efficiency of allocators can be
improved by up to 18.85% by using the budgeting method.
Its worst-case execution time is analyzed to be bounded.

Keywords: Dynamic storage management, main
memory, real-time systems.

Manuscript received May 11, 2010; revised July 4, 2010; accepted July 19, 2010.
This work was supported partly by the Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology, Rep. of Korea (grant no. 2009-0088455), and partly by the 2009 Research
Grant of Kwangwoon University, Seoul, Rep. of Korea.

Junghee Lee (phone: +1 404 494 6797, email: konnen27@gmail.com) is with the
Department of Electrical and Computer Engineering, Georgia Institute of Technology, Georgia,
USA.

Joonhwan Yi (corresponding author, email: joonhwan.yi@kw.ac.kr) is with the Department
of Computer Engineering, Kwangwoon University, Seoul, Rep. of Korea.

doi:10.4218/etrij.11.0110.0268

I. Introduction

There are three important requirements for a dynamic
memory allocator to be used for real-time systems [1], [2]:
bounded worst-case execution time, fast average execution
time, and minimal fragmentation. In this paper, we focus on
minimizing fragmentation while the other requirements are still
satisfied. Memory fragmentation is a serious problem for real-
time systems that run continuously during their whole lifetime
[3].

Since real-time embedded systems generally run with fixed
applications, there are objects whose type can be determined a
priori while the number of objects to be alive in memory is
unpredictable. An object, in this sense, is a kind of structured
data item, such as a Pascal record, C struct, or C++ object [4].
Based on the fact that the types of objects to be stored in the
heap storage are predetermined, a memory allocator can be
optimized for better memory efficiency.

This paper proposes a budgeting method that divides the
heap storage into two parts, dedicated and shared, and
reduces fragmentation by budgeting dedicated storage for
predetermined objects. To budget the optimum size of
dedicated storage, the budgeting method utilizes the given
memory profile that traces when and which object is
allocated and freed. The experimental results show that the
proposed method improves the memory efficiency of state-
of-the-art allocators in [3], [5], and [6] by up to 18.85% on
average.

Section II reviews the related works. Sections III and IV
describe the budgeted allocator and the budgeting method,
respectively. Section V shows the experimental results to prove
the effectiveness of this method and provides an analysis of its
costs. Finally, section VI provides the conclusion.

Improving Memory Efficiency of Dynamic Memory
Allocators for Real-Time Embedded Systems

Junghee Lee and Joonhwan Yi

ETRI Journal, Volume 33, Number 2, April 2011 Junghee Lee and Joonhwan Yi 231

II. Related Work

While dynamic memory allocators are prevalently used in
most software, they are rarely adopted in real-time systems due
to their unpredictable execution time. A half-fit allocator [7]
with constant execution time was proposed but suffers from
high fragmentation [1]. Recently, a two-level segregated-fit
(TLSF) allocator [3] was reported to achieve both bounded
execution time and low fragmentation.

Minimizing fragmentation is becoming more important
since the number of real-time applications requiring a large
amount of memory is increasing, such as video streaming,
virtual reality, scientific data gathering, and data acquisition [1].

In order to reduce fragmentation, a hybrid allocator [8] was
proposed which applies different management algorithms
depending on the size of objects. Similarly, the Lea allocator
[9] uses different algorithms depending on the size of requested
objects, such as block cache, segregated list, and first-fit. Static
allocators do not cause fragmentation [10] because they
allocate a fixed-size memory region immediately after the
system initialization and do not allocate or free memory
regions at run time. However, this may also lead to wastage of
memory because memory must be allocated for the worst case.

Fragmentation can be reduced by improving the locality.
Improving the locality can be accomplished by analyzing the
lifetime [11], freeing all the objects in a region at the same time
[12], or caching frequently used objects [13]. Berger and others
[9] enhanced memory efficiency by providing deletion of
individual objects as well as a whole region.

Existing techniques for reducing fragmentation [8], [9], [11]-
[13], however, cannot guarantee bounded execution time. The
budgeting method proposed in this paper reduces
fragmentation of any existing allocator if the memory profile of
objects is provided. In this case, the execution time of the
allocator is still bounded.

The budgeting method reduces fragmentation by providing
dedicated regions for each object. The concept of a dedicated
region is similar to that of a reservation [1], [14]. The technique
in [1] assumes each task reserves its memory to analyze
schedulability of tasks rather than to reduce fragmentation. The
method in [14] uses reservation to reduce execution time and
power consumption.

The slab allocator [13] also uses a similar concept of
dedicating regions, named slabs, to certain objects. The size of
a slab is a multiple of a page size, and each slab is dedicated to
a type of object. So, internal fragmentation can still be
significant in the dedicated region if a small number of such
objects is allocated. On the other hand, there is no internal
fragmentation in the dedicated region of the proposed allocator
because the size of the dedicated region can be an arbitrary

Fig. 1. Composition of heap storage.

Dedicated region Shared region

...

N1

S1
S1-sized buckets

A1
start

1st objects
A1

end
2nd object n-th object

number. The main contribution of our paper is to provide a
systematic way to determine the size of the dedicated region by
analyzing memory traces a priori.

III. Budgeted Allocator

A budgeted allocator comprises a dedicated (region)
allocator and a shared (region) allocator. Accordingly, the
heap storage is divided into two parts: the dedicated region and
shared region as shown in Fig. 1. The dedicated region is a
segregated storage [4] for predetermined objects Oi of size Si
where Si ≠ Sj (i ≠ j) for 1 ≤ i, j ≤ n. Note that different objects a
and b can be Oi if their sizes are the same as Si. The dedicated
region for Oi is composed of Ni buckets that are Si-sized and
dynamically managed. The shared region is a normal storage
that is managed by a shared allocator.

The budgeting method improves the memory efficiency of
the shared allocator by using the dedicated region for
predetermined objects. The exact segregated fit allocator [4] is
the dedicated allocator, and any proper existing memory
allocator can be used as a shared allocator. The contribution of
the proposed method is to improve memory efficiency by
sizing (or budgeting) the dedicated region well.

Object Oi is first allocated to the dedicated region by the
dedicated allocator. If there is no free bucket of the exact size Si
in the dedicated region, Oi is allocated to the shared region
rather than allocated to a larger bucket in the dedicated region.
In this way, no fragmentation is possible by the dedicated
allocator. Any other object Os where s > n is always allocated to
the shared region by the shared allocator.

Figure 2 shows the pseudocode of the budgeted allocator.
Note that Si and Ni for 1 ≤ i ≤ n are predetermined. Object size
Si is provided by the user, and Ni is determined by the
budgeting method described in section IV. Free buckets of size
Si are managed by a stack STi. So, there are n stacks {ST1,
ST2,…, STn} for the free buckets.

The function init takes two arguments, Si and Ni, and reserves
Ni buckets of size Si by a low-level allocator. The low-level
allocator is a type of system call to increase the data space of
the program with respect to the requested size. For example,
library routine sbrk [4] in C behaves as a low-level allocator.

232 Junghee Lee and Joonhwan Yi ETRI Journal, Volume 33, Number 2, April 2011

Fig. 2. Pseudocode of budgeted allocator.

data structure for i-th object in the dedicated region
STi // Stack for tracking the free list of Si-sized buckets
Ai

start // Start address of Si-sized buckets
Ai

end // End address of Si-sized buckets
Si // Size of one i-th object

end data structure

function init(Si, Ni)

// Si denotes the size of objects Oi in the dedicated region
// Ni denotes the number of dedicated buckets for Oi
Low-level allocator allocates Ni buckets of size Si
Create a data structure
Push Ni buckets into STi
Store the start address Ai

start of Si-sized buckets
Store the end address Ai

end of Si-sized buckets
Store Si
return i; // the index of Oi

end function

function malloc(i)

// i denotes the index of the requested object
if STi is not empty

remove and return a bucket from the top of STi
else

call the shared allocator for a region of size Si
return the result

end if
end function

function free(b, i)

// b denotes the pointer of the bucket to be freed
// i denotes the index of the requested object
If Ai

start≤b≤Ai
end

add bucket b to the top of STi
else

return b to the shared storage allocator
end if

end function

function main // example

i0 = init(S0, N0)
i1 = init(S1, N1)
for x=0 to 100

O0 = malloc(i0)
O1 = malloc(i1)
process(O0, O1, x)
free(O0, i0)
free(O1, i1)

end for
end function

Most dynamic memory allocators reserve memory regions to
be managed by themselves using a low-level allocator. Then, it
creates a data structure for the requested object and fills each
field. The data structure consists of a stack STi, start and end
addresses of Ni buckets, and the size Si of the object. The start
and the end addresses of the buckets are needed to determine
whether a bucket to be freed belongs to the dedicated region or

the shared region when the function free is called. The size of
the object is stored for requesting a region by the shared
allocator when there are no more available buckets in the
dedicated region. Finally, it returns the index of the object.

The function malloc returns a bucket from the top of stack STi
if there remains a free bucket. Otherwise, it passes the request to
the shared allocator and returns a part of the shared region.

The function free determines if the bucket to be freed
belongs to the dedicated region by comparing the pointer of the
bucket with the start and the end addresses of Si-sized buckets.
If the bucket to be freed belongs to the Si-sized buckets, it is
added into STi. Otherwise, it is passed to the shared allocator to
be freed.

The caller should call the function init for each object and
store its index for calling the function malloc and free. This
interface is different from that of traditional memory allocators.
We chose this interface for real-time applications by improving
the average execution time and by making the worst case
execution time bounded.

To keep the same interface of traditional memory allocators,
the function free needs to have only one argument b. Because
the other argument i is not provided anymore, it requires a
linear search which makes the execution time longer and
unpredictable. So, the index i is provided for function free so
that free can be done in a constant time.

Buckets in the dedicated region can be allocated and freed
within a constant time. For buckets in the shared region, their
allocation and de-allocation time is bounded as long as the
worst cast execution time of the shared allocator is bounded.
This means that the budgeting method can be applied to
memory allocators for real-time applications whose worst case
execution time needs to be bounded.

IV. Budgeting Method

This section describes how to determine Ni, which is the
number of buckets dedicated to Oi in the dedicated region.
Three solutions are available for the determination of Ni: user-
driven, compiler-driven, and profile-driven solutions [11]. The
user-driven solution may suffer from human errors [11]. Lack
of information of run time behaviors inhibits applying the
compiler-driven solution to the budgeting method. Thus, we
selected the profile-driven solution, which is widely used for
customizing memory allocators [9], [11], [12], [15].

The memory profile Pi(t) is obtained by post-processing the
memory trace. The number of buckets in use of size Si at time t
is denoted by Pi(t). To generate the trace, the application is
compiled and run with a conventional general-purpose
allocator that contains augmented codes to generate the trace.
In the allocation function (for example, malloc), the requested

ETRI Journal, Volume 33, Number 2, April 2011 Junghee Lee and Joonhwan Yi 233

size and the returned address are traced with a timestamp. The
timestamp is only used for ordering the trace. In the free
function (for example, free) the address to be freed is traced
with a timestamp. Then, Pi(t) is incremented by 1 if Oi is
allocated at time t and decremented by 1 if Oi is freed.

1. Problem Formulation

The main objective of determining Ni is to minimize the size
of the heap storage. At first, we formulate the required size R(t)
of storage at time t for any memory allocator in a general form
by

 () () () ()R t U t F t H t= + + , (1)

where U(t) is the amount of buckets in use, F(t) is the internal
and external fragmentation, and H(t) is the overhead due to
memory allocators. Here, the buckets in use refer to the
allocated or reserved buckets for one object, which cannot be
used for other objects. The internal fragmentation occurs in the
unused region within a bucket because the allocated bucket is
larger than the requested size, and the external fragmentation
occurs due to the free buckets that cannot be allocated because
their sizes are smaller than the requested size [15]. The
overhead refers to the memory region that is used, not by the
requestor, but by the allocator to manage buckets.

The size of the heap storage should be greater than the
maximum Rmax of R(t). In order to minimize the size of the
heap storage, Rmax should be minimized. Overhead H(t) can be
ignored because it does not significantly affect to Rmax.
Fragmentation F(t) cannot be estimated accurately without
simulation because it depends mostly on the scenario. Equation
(2) shows U(t) in a different form:

 () (())i i
i

U t S P t= ×∑ . (2)

Recall that Si is the size of object Oi, and Pi(t) is the number
of Si-sized buckets allocated by Oi’s.

Now, we consider (1) for our budgeted allocator. At first, no
fragmentation occurs in the dedicated region. Therefore, it is
very likely that F(t) proportionally decreases as Ni increases. In
the meantime, the maximum value Umax of U(t) may increase,
which we show later. For budgeted allocators, (1) is rewritten
as

 () () () ()B B B BR t U t F t H t= + + . (3)

The superscript B denotes that each variable is for the
budgeted allocator. Then, UB(t) can be written as

 () (MAX(, ()))B
i i i

i

U t S N P t= ×∑ , (4)

where MAX(A, B) denotes the larger value between A and B.

This equation implies that UB(t) is larger than U(t) if Ni > Pi(t)
for each i because other objects cannot use the Si-sized buckets
in the dedicated region. Note that Pi(t) is independent of Pj(t)
where i ≠ j. Our goal is to minimize Rmax while maintaining
UB

max smaller than Umax. That is,
 UB

max ≤ Umax. (5)
Note that if Ni > Pi, max, (Ni – Pi, max) buckets in the dedicated

region are useless where Pi, max is the maximum of Pi(t). So the
following condition should also be enforced:

 Ni ≤ Pi, max , for every i . (6)
In addition, the dedicated region should be maximized to

minimize FB(t). As the size of the dedicated region is

 ()i i
i

D S N= ×∑ . (7)

D should be maximized while UB
max ≤ Umax from (5) and

Ni ≤ Pi,max from (6) for every i. In summary, the problem is
defined as the following.

Problem Definition. Given Si and Pi(t), find Ni such that D
is maximized while UB

max ≤ Umax and Ni ≤ Pi,max for every i,
where

(), () (()),i i i i
i i

D S N U t S P t= × = ×∑ ∑ and

() (MAX(, ())).B
i i i

i

U t S N P t= ×∑

An illustrative example is shown in Fig. 3. In Fig. 3(a) and

Fig. 3. Illustrative example of U(t) and UB(t).

U(t)

Umax

S3×P3(t)

S2×P2(t)

S1×P1(t)
t

UB(t)
UB

max

S1×N1

t
t1 t2

(a) U(t)

(b) UB(t).

234 Junghee Lee and Joonhwan Yi ETRI Journal, Volume 33, Number 2, April 2011

Fig. 3(b), U(t) and UB(t) are depicted, respectively, where only
N1 is non-zero and N2 and N3 are zero. As U(t) is a summation
of Si × Pi(t) for every i, the graph has split regions. The region
due to S1 × P1(t) is the darkest one. Note that the height of the
darkest region in UB(t) is always greater than S1 × N1. In this
example, N1 is set to P1(t2) when U(t2) is Umax. This selection of
N1 does not cause UB(t2) increase in Fig. 3(b). However, it
causes UB(t1) to exceed Umax, which means that UB

max becomes
greater than Umax. To maintain UB

max smaller than Umax, N1
should be set to smaller value so that UB(t) does not exceed
Umax all the time. An algorithm to compute Ni satisfying (5) is
presented in the following subsection.

2. Solution

This problem cannot be solved within the polynomial time
by an exhaustive algorithm. From (6), Ni can be any value from
0 to Pi,max, and we need to explore the combination of
{N1, N2,…, Nn} that makes the size of the dedicated region
largest while maintaining UB

max ≤ Umax. Consequently, the
complexity is proportional to ,maxi

i

P∏ . Such algorithms can

hardly be applied when n or Pi,max is large. As a practical
solution, we propose a greedy algorithm whose pseudocode is
shown in Fig. 4. This algorithm can solve the problem within
polynomial time as its complexity is proportional to n.

Every time t, following (8) should be satisfied:

 max()BU t U≤ . (8)

Inserting (4) to (8) becomes

 max(MAX(, ())) ,i i i
i

S N P t U× ≤∑ (9)

for every i and t. A sub-optimum Ni can be computed by
assuming that Nj (i ≠ j) are fixed a priori. The following
assumptions are used to compute sub-optimum Ni:

1) Si is ordered such that Si ≥ Sj if i < j.
2) Ni is computed by assuming that Nk is precomputed and

Nj = 0 where k < i < j.
For N1, assume that Nj (1 < j ≤ n) is zero. Then, (9) can be

rewritten as

 1 1 1 max
2

MAX(, ()) (())
n

j j
j

S N P t U S P t
=

× ≤ − ×∑ . (10)

Note that every variable except for N1 is known. If N1 ≤ P1(t)
for every t, (10) becomes

 1 1 max
2

() (())
n

j j
j

S P t U S P t
=

× ≤ − ×∑ , (11)

that is always true by the definition of Umax. In other words, if

Fig. 4. Pseudocode of greedy algorithm.

begin
for i = 1 to n

compute Pi,max
end for
compute Umax

for i = 1 to n

compute Mi,min
where

1

max
1 1

() (MAX(, ())) (())
i n

i j j j j j
j j i

M t U S N P t S P t
−

= = +

= − × − ×∑ ∑

,max ,minMIN(, /)i i i iN P M S⎢ ⎥= ⎣ ⎦

end for
end

N1 ≤ P1(t) for every t, it is always true that UB

max ≤ Umax.
However, if N1 > P1(t) at a time t, from (10)

 1 1 max 1
2

(()) ()
n

j j
j

S N U S P t M t
=

⎧ ⎫⎪ ⎪× ≤ − × =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ . (12)

Note that the right hand side is denoted by M1(t) that is a
function of t. The semantics of M1(t) is the amount of memory
region that can be reserved for the object O1 at time t. That is,

 1
1

1

()M t
N

S
≤ , (13)

for every t. Therefore, if

 N1 ≤ P1(t) or 1
1 1

1

()
()

M t
P t N

S
< ≤ , (14)

for every t, UB
max ≤ Umax. In other words,

 1, min
1

1

M
N

S
 ≤ , (15)

where M1,min is the minimum of M1(t). Because we are looking
for the largest N1 that satisfies UB

max ≤ Umax and N1 ≤ P1,max,

1, min
1 1, max

1
MIN , .

M
N P

S

⎛ ⎞⎢ ⎥
= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (16)

In general, the solution is given as the following.
Solution. The number Ni of dedicated storages for i-th object

is

, min
, maxMIN , ,i

i i
i

M
N P

S

⎛ ⎞⎢ ⎥
= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

where
1

max
1 1

() (MAX(, ())) (()).
i n

i j j j j j
j j i

M t U S N P t S P t
−

= = +

= − × − ×∑ ∑

Our experimental results in section V show that the proposed

ETRI Journal, Volume 33, Number 2, April 2011 Junghee Lee and Joonhwan Yi 235

Fig. 5. Four temporal distributions TD = {tds, tdn, tdo, tdr} of
objects over time considered in this experiment.

Time

Object 4
Object 3
Object 2
Object 1 M

em
or

y
us

ag
e

(a) Synchronized (tds)

Object 4
Object 3
Object 2
Object 1 M

em
or

y
us

ag
e

Time
(b) Non-overlapped (tdn)

M
em

or
y

us
ag

e
M

em
or

y
us

ag
e

Time
(c) Overlapped (tdo)

Time
(d) Random (tdr)

Object 4
Object 3
Object 2
Object 1

Object 4
Object 3
Object 2
Object 1

algorithm is much faster than the exhaustive search algorithm
and the results of {N1, N2,…, Nn} are close to the optimum
values.

V. Experiments

The methodology used for the experiments is explained first,
and the impacts of the proposed budgeting methods on
memory efficiencies are presented. Various known memory
allocators have been used for the experiments. In addition, to
show the efficiency of the proposed budgeting algorithms, the
execution time is compared to the exhaustive search algorithm.

Finally, the overhead of the budgeted method is measured by
the execution time and code size of allocators with and without
budgeting methods.

The execution time is measured by using an electronic
system level simulator, Carbon Design System’s SoC Designer
[16], with a cycle-accurate ARM926 model. In order to
minimize nondeterministic behaviors, all the instructions and
data were stored on a static random access memory while the
caches were turned off. The code size of each allocator is
measured after compiling them with ARM RVCT2.2 [17].

1. Methodology

The amount of fragmentation depends largely on the
scenarios. Providing an appropriate scenario is crucial to
experiments of fragmentation [7]. There are mainly two
approaches to generate scenarios: standard benchmark
applications and synthetic workload models [3]. As mentioned
in [3], the requirements of real-time applications are different
from those of the standard benchmark applications. Real-time
applications should run continuously during their lifetime
responding to unpredictable inputs. It is the reason why
synthetic workload models are adopted by many studies on
memory allocators of real-time applications [1], [3], [7], [18].

Four temporal distributions of objects shown in Fig. 5 with
five object configurations shown in Table 1 are considered in
our experiments. More detail discussions on Fig. 5 and Table 1
are given in the following paragraphs. A scenario is composed
of a temporal distribution of objects with an object
configuration, and thus there are twenty scenarios under
consideration. Our methodology is similar to that in [7] but
refined according to the characteristics of real-time applications
and algorithms used by allocators.

Figure 5 illustrates four temporal distributions TD = {tds, tdn,
tdo, tdr} of objects over time. Figure 5(a) shows the
synchronized temporal distribution tds where the amount of
memory required for each object reaches the peak at the same
time. This scenario happens when multiple objects are
allocated in a single task. If the sizes of each object and
memory profile are known a priori, the simple segregated fit
allocator performs most efficiently for tds because there is no
chance to share space among objects at the peak time. Figure
5(b) depicts another extreme case, non-overlapped distribution
tdn. There are no overlapped intervals among lifetimes of
objects. Thus, the fragmentation is likely to be lower than other
distributions because only one type of object is used during a
certain time. This scenario illustrates a situation where multiple
independent tasks are running concurrently in a system, and the
lifetime of objects is within the task. The most realistic scenario
would be the overlapped distribution tdo shown in Fig. 5(c).

236 Junghee Lee and Joonhwan Yi ETRI Journal, Volume 33, Number 2, April 2011

Table 1. Five object configurations OC = {oc2l, oc2s, ocl, ocs, ocmix}
with eight objects O1 through O8 and their size S1 through S8.

Object size
Name

2k large
(oc2l)

2k small
(oc2s)

Arbitrary
large (ocl)

Arbitrary
small (ocs)

Mixed
(ocmix)

S1 131,072 1,024 91,936 2,952 80,176

S2 65,536 512 80,176 1,978 65,536

S3 32,768 256 64,032 1,040 32,768

S4 16,384 128 49,472 996 19,008

S5 8,192 64 35,432 384 2,952

S6 4,096 32 19,008 192 1,024

S7 2,048 16 17,424 40 40

S8 1,024 8 5,184 10 10

There are some overlapped and some non-overlapped intervals
among lifetimes. This scenario may happen either in using
multiple objects in a single task or in using objects across
multiple tasks. Figure 5(d) shows a purely random scenario tdr.

Table 1 shows five object configurations OC = {oc2l, oc2s, ocl,
ocs, ocmix} characterized by the number of objects and their size.
For simplicity, every configuration has eight objects, O1
through O8. The size Si of each object Oi was selected to
stimulate all the aspects of nine dynamic allocators. The nine
dynamic allocators consist of the six allocators in [6] named
from test 1 to test 6, the Kingsley (DJGPP in [6]), the Lea [5],
and TLSF [3]. TLSF is the only memory allocator whose
execution time is bounded. Although this paper focuses on
real-time applications, the budgeting method can be applied to
any memory allocators in any applications as long as their
memory profile is provided. Eight other allocators are included
to show that the budgeting method can improve memory
efficiency of allocators whose execution time is not bounded.

Allocators in test 1 through test 3 always allocate 2k-sized
buckets. Kingsley and Lea allocators allocate 2k-sized buckets
for small objects. They are likely to be efficient if every Si is
2k-sized. Thus, we use both object configurations with only
2k-sized objects, oc2l and oc2s, and without 2k-sized objects, ocl
and ocs. Then, we divided them into those with larger than
1,024 bytes and those smaller than 1,024 bytes, that is, oc2l and
oc2s, respectively.

All the allocators, except in test 1 and the TLSF allocator,
allocate an additional memory chunk C from the low-level
allocator if there is no more room. Thus, the relative size
between Si and C affects their memory efficiency measured by
the low-level allocator. In this experiment, a 1,024 byte
memory was used for memory chunk C.

To generate each scenario, we assumed periodic tasks. It
should be noticed that periodic tasks were assumed only for the

convenience of scenario generation. The budgeting method
does not need to assume periodic tasks. One task corresponds
to one object, which means that a task allocates and frees one
object during its active interval. An active interval of each task
was randomly selected and corresponding object were
randomly allocated and freed. By adjusting the distribution of
the active interval, periods of tasks, and intervals among tasks
all of the scenarios were generated. The synchronized
distribution tds was set to reach peak at the same time forcefully.
The maximum number Pi, max of objects requested for the i-th
object Oi was set to 100 for every i.

Finally, we added the mixed object configuration. The four
other configurations {oc2l, oc2s, ocl, ocs} were chosen to
stimulate all the aspects of the nine allocators. However, these
are less realistic. For instance, it is rare for an application to use
only 2k-sized objects such as oc2l and oc2s. The mixed
configuration ocmix was made up by mixing two sizes from
{oc2l, oc2s, ocl, ocs}.

The memory efficiency was measured by comparing the
maximum size Rmax of R(t) for different memory allocators. If
an allocator A has smaller Rmax than another allocator B does, A
has higher memory efficiency than B because A requires
smaller memory for the same application. The maximum
amount of allocated regions by the low-level allocator was
measured as Rmax. TLSF was an exceptional case because it
simply fails the system if the pre-requested storage size is not.
For TLSF, Rmax was measured by trial and errors. That is, each
scenario was iteratively simulated with large heap storage at the
beginning, and then the size of the storage was reduced until
the TLSF allocator failed to respond to a memory request.

2. Experimental Results

The budgeting methods are applied to the twenty scenarios
defined in the previous subsection. The memory efficiency is
measured by the reduction rate of the Rmax, the maximum size
of the required memory. Recall that each ma of nine previously
published allocators is compared against the budgeted allocator
employing ma as the shared allocator. For each scenario and
each memory allocator, the reduction rate of Rmax is computed.
That is, (RB

max/Rmax) × 100 is computed where RB
max denotes

the maximum size of required memory after the budgeting
method is applied. Then, the average reduction rate of Rmax for
nine memory allocators is computed for each scenario.

Table 2 shows the average reduction rate of Rmax for the
twenty scenarios. Except one scenario {tdn, ocl}, the budgeted
allocator achieves up to 18% of memory efficiency. More
detail analysis follows.

As shown in Table 2, the improvement in memory efficiency
mostly depends on the temporal distribution TD rather than

ETRI Journal, Volume 33, Number 2, April 2011 Junghee Lee and Joonhwan Yi 237

Table 2. Average reduction rate of Rmax for twenty scenarios.

Scenario
Synchronized

(tds)
Non-overlapped

(tdn)
Overlapped

(tdo)
Random

(tdr)
2k large (oc2l) 10.74% 2.71% 5.34% 8.31%

2k small (oc2s) 18.85% 3.21% 7.56% 11.76%
Arbitrary
large (ocl)

14.55% –1.37% 4.46% 8.43%

Arbitrary
small (ocs)

14.52% 2.00% 8.48% 11.59%

Mixed (ocmix) 15.44% 0.30% 8.20% 13.39%

object configuration OC. So, in Fig. 6, we depict the memory
efficiency of different memory allocators for various temporal
distributions with mixed object configuration only, that is,
scenarios {tds, ocmix}, {tdn, ocmix}, {tdo, ocmix}, and {tdr, ocmix}.
For different scenarios, Ni’s need to be recalculated. Thus, the
four scenarios shown in Fig. 6 use different Ni’s. While each
cell in Table 2 shows the average reduction rate of nine
memory allocators for the given scenario, Fig. 6 shows Rmax
and RB

max of nine dynamic allocators for the given scenario.
The vertical axis indicates the size of Rmax and RB

max in bytes.
Figure 6(a) shows the result for scenario {tds, ocmix}. Our

budgeting algorithm results show that Ni = Pi, max, which means
that only the dedicated allocator should be used, and the shared
allocator should be never used. That is the reason why the
RB

max of every allocator is same. As a result, memory efficiency
was improved by 15.44% on average. We also obtained similar
results when the object configurations were changed.

Figure 6(b) shows the result for scenario {tdn, ocmix}. Our
budgeting algorithm results show that most Ni’s are zero. This
is one of the worst cases from the viewpoint of the budgeting
method because there is little fragmentation. This case was
chosen to illustrate the limitation of the proposed budgeting
method. Since the budgeting method improves the memory
efficiency by reducing fragmentation, it hardly works when
there is little fragmentation. Moreover, it may even worsen the
efficiency as illustrated in Fig. 3 (see the results of test 2 in Fig.
6(b)). The budgeting method increases the possibility that the
fragmentation is reduced but cannot guarantee it. That is also
the reason why the memory efficiency worsened for the
scenario {tdn, ocl} with arbitrary large objects shown in Table 2.

Figures 6(c) and 6(d) show the results for scenarios {tdo,
ocmix} and {tdr, ocmix}, respectively. The budgeting method
improves memory efficiencies by 8.20% and 13.39%,
respectively, on average.

Now, we demonstrate the efficiency of the proposed greedy
algorithms that compute the size of dedicated regions. Table 3
shows the comparison results of the exhaustive algorithm and

Fig. 6. Comparison of memory efficiency for different temporal
distributions with mixed object configuration ocmix.

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000

Original
Budgeted

Te
st

 1

Te
st

 2

Te
st

 3

Te
st

 4

Te
st

 5

Te
st

 6

K
in

gs
le

y

Le
a

TL
SF

(a) Synchronized {tds, ocmix}

0

5000000

10000000

15000000

20000000

25000000

30000000

Original
Budgeted

Te
st

 1

Te
st

 2

Te
st

 3

Te
st

 4

Te
st

 5

Te
st

 6

K
in

gs
le

y

Le
a

TL
SF

(b) Non-overlapped {tdn, ocmix}

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000

Original
Budgeted

Te
st

 1

Te
st

 2

Te
st

 3

Te
st

 4

Te
st

 5

Te
st

 6

K
in

gs
le

y

Le
a

TL
SF

(c) Overlapped {tdo, ocmix}

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000

Original
Budgeted

Te
st

 1

Te
st

 2

Te
st

 3

Te
st

 4

Te
st

 5

Te
st

 6

K
in

gs
le

y

Le
a

TL
SF

(d) Random {tdr, ocmix}

the proposed greedy algorithm. The execution time speedup is
the execution time ratio of the exhaustive algorithm to the
proposed greedy one. The greedy algorithm is up to 15,000
times faster than the exhaustive algorithm, while it finds near
optimum values of Ni that differ at most 0.2% from the
optimum values in our experiments. Note that if the number n

238 Junghee Lee and Joonhwan Yi ETRI Journal, Volume 33, Number 2, April 2011

Table 3. Comparison of budgeting algorithms in execution time and
accuracy.

n 4 4 5

Pi,max 10 20 10

Exhaustive 7,391 33,781 157,671

Greedy 7 8 10 Execution
time (ms)

Speedup 1,056 4,223 15,767

Exhaustive 15,520 34,688 16,016

Greedy 15,520 34,688 15,984 ()i i
i

S N×∑

Ratio
(accuracy) 100% 100% 99.8%

Fig. 7. Execution time overhead due to budgeting method.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Original
Budgeted

Te
st

 1

Te
st

 2

Te
st

 3

Te
st

 4

Te
st

 5

Te
st

 6

K
in

gs
le

y

Le
a

TL
SF

%

of objects with different sizes and Pi, max are increasing, the
execution time of the exhaustive algorithm increases
exponentially. Considering that most of real-time systems use
n >> 5, the exhaustive algorithm would be infeasible for such a
large number of objects.

Figure 7 shows the cost of the budgeting method. The
average execution time tends to increase as shown in Fig. 7. On
average, the execution time is increased by 1.66%. This is
because budgeted allocators need to check first if there is a free
bucket in the dedicated region. Considering real-time
applications, in the case of the TLSF allocator, its average
increment in execution time is 9.36%.

Whether this overhead is significant or negligible depends on
the application. Because the fragmentation is also highly
dependent on the application, the reduction rate of the required
memory size varies with the application, too. The designer
should make a decision considering the trade-off between the
memory size and the average execution time. However, the
proposed method provides a way to enhance memory
efficiency with less overhead than using more efficient but
more complicated, slower, and not WCET-bounded memory
allocators.

The code size of the budgeted allocator inevitably increases
because it is composed of two allocators. However, the amount
of the increment was measured as 548 bytes. That is negligibly
small considering the memory requirement of emerging real-
time applications, such as video streaming, virtual reality,
scientific data gathering, and data acquisition. Because the
budgeted allocator achieves higher memory efficiency than
other allocators even with the higher code size overhead, it is
clear that the budgeted allocator improves fragmentation.

VI. Conclusion

A budgeting method of memory regions was proposed to
enhance memory efficiency while real-time requirements on
execution time are satisfied. To minimize fragmentation, the
budgeted allocator exploits a dedicated storage for
predetermined sizes of objects. To determine the number of
dedicated buckets for each object, a formulation and its
heuristic solution were presented. The budgeting method was
applied to nine memory allocators. Our experiments show that
the budgeted allocators achieved improvements in memory
efficiency by up to 18.85%. We also designed budgeted
allocators such that the worst-case execution time of the
budgeted allocator is bounded as long as the shared allocator is
bounded. Although we focus on real-time applications in this
paper, the budgeting method can benefit any applications
whose memory efficiency needs to be improved if its memory
profile is provided.

References

[1] A. Marchand et al., “Memory Resource Management for Real-
time Systems,” Proc. Euromicro Conf. Real-Time Systems, Pisa,
Italy, July 2007, pp. 201-210.

[2] M. Ramakrishna et al., “Smart Dynamic Memory Allocator for
Embedded Systems,” Proc. Int. Symp. Computer Inf. Sci., 2008,
pp. 1-6.

[3] M. Masmano et al., “TLSF: A New Dynamic Memory Allocator
for Real-Time Systems,” Proc. Euromicro Conf. Real-Time Syst.,
Catania, Italy, June 2004, pp. 79-88.

[4] P. Wilson et al., “Dynamic Storage Allocation: A Survey and
Critical Review,” Technical Report, Department of Computer
Science, Univ. of Texas, Austin, 1995.

[5] D. Lea, A Memory Allocator. Available: http://g.oswego.edu/
dl/html/malloc.html

[6] Delorie software. Available: http://www.delorie.com/djgpp/malloc
[7] T. Ogasawara, “An Algorithm with Constant Execution Time for

Dynamic Storage Allocation,” Proc. 2nd Int. Workshop Real-
Time Computing Syst. Appl., 1995, pp. 21-25.

[8] Y. Hasan and J. Chang, “A Hybrid Allocator,” Proc. IEEE Int.

ETRI Journal, Volume 33, Number 2, April 2011 Junghee Lee and Joonhwan Yi 239

Symp. Performance Anal. Syst. Software, Austin, USA, Mar.
2003, pp. 214-222.

[9] E. Berger, B. Zorn, and K. McKinley, “Reconsidering Custom
Memory Allocation,” Proc. ACM Conf. Object-Oriented
Programming, Syst., Languages, Appl., Seattle, USA, Nov. 2002,
pp. 1-12.

[10] H. Zhe, Z. Jun, and L. Xiling, “Design and Realization of Efficient
Memory Management for Embedded Real-Time Application,”
Proc. Int. Conference ITS Telecommun., Chengdu, China, June
2006, pp. 174-177.

[11] M. Seidl and B. Zorn, “Segregating Heap Objects by Reference
Behavior and Lifetime,” Proc. Int. Conf. Architectural Support
for Programming Languages Operating Syst., San Jose, USA,
Oct. 1998, pp. 12-23.

[12] M. Tofte and J. Talpin, “Region-Based Memory Management,”
Inf. Computation, vol. 132, no. 2, Feb. 1997, pp. 109-176.

[13] J. Bonwick, “The Slab Allocator: An Object-Caching Kernel
Memory Allocator,” Proc. USENIX Technical Conf., Boston,
USA, June 1994, pp. 87-98.

[14] A. Eswaran and R. Rajkumar, “Energy-Aware Memory
Firewalling for QoS-Sensitive Applications,” Proc. Euromicro
Conf. Real-Time Syst., 2005, pp. 11-20.

[15] D. Atienze et al., “Dynamic Memory Management Design
Methodology for Reduced Memory Footprint in Multimedia and
Wireless Network Applications,” Proc. Design, Automation and
Test in Europe, Acropolis, France, Apr. 2004, pp. 532-537.

[16] Carbon Design Systems, SoC Designer. Available: http://
carbondesignsystems. com/Products/SoCDesigner.aspx

[17] ARM Ltd., RealView Compilation Tools (RVCT) 2.2. Available:
http://www. arm.com

[18] B. Zorn and D. Grunwald, “Evaluating Models of Memory
Allocation,” ACM Trans. Modeling Computer Simulation, vol. 4,
no. 1, Jan. 1994, pp. 107-131.

Junghee Lee received the BS and MS in
computer engineering from Seoul National
University, Rep. of Korea, in 2000 and 2003,
respectively. He has been a PhD student of
Georgia Institute of Technology since 2008.
From 2003 to 2008, he was with Samsung
Electronics, where he worked on the electrical

system level design of mobile system-on-chips. His current research
interests include architecture design of microprocessors, memory
hierarchy, and storage systems for high performance computing and
embedded systems.

Joonhwan Yi received the BS in electronics
engineering from Yonsei University, Seoul, Rep.
of Korea, in 1991, and the MS and PhD in
electrical engineering and computer science
from the University of Michigan, Ann Arbor, in
1998 and 2002, respectively. From 1991 to
1995, he was with Semiconductor Business,

Samsung Electronics Corporation, Rep. of Korea, where he was
involved in developing application specific integrated circuit cell
libraries. In 2000, he was a summer intern with Cisco, Santa Clara, CA,
where he worked on path delay fault testing. From 2003 to 2008, he
was with Telecommunication Networks, Samsung Electronics
Company, Suwon, Rep. of Korea, where he worked on the system-on-
chip architectural design for mobile applications. Since 2008, he has
been a faculty member of the Computer Engineering Department,
Kwangwoon University, Seoul, Rep. of Korea. His current research
interests include C-level system modeling for fast hardware and
software co-simulation for computer vision based applications, system-
level power analysis and optimization, and high-level testing.

