AL WY A2Re] dAE A% wdyy

AN WA Az AAE 9

1A 2AEY 89

HARAY 3G LAY 2AIEH
(Non-Preemptive Fixed Priority Scheduling for Design of
Real-Time Embedded Systems)

Hl
=l

=
—

= t
e

(Moonju Park)

OF
=

R R L IR ECE

=
!

fo o} mN L O 52 ox
>,

m oft

F Qe WY wel:
D WRR A2, AN 2AEY

b
L

X
b

FHIAE 2 F34A dy AHT e
9] olfE 2d= s Ty Fduche

WA Axylede dme AR st A

o]

ME-TEY rzagy 2de AssE 297

AZEGOL BH O SHAARA, WAE A2AS 9% LTEACIE
HE-T5Y T2y wdel 9 oME dEHE =2y st
B w=RAAE WY Axde) Aol NAYY 2AEY FES =98] A5k, DAY 2
BAE AT FREAH 0T olgd BEAY 2AF 54 A BHS AN, E3)
AN Mp-thrzme] $go) MAEY ArEES

o
Zﬂ\.‘___

o el AATE =1 9l

&S W] S e M) ol8E

Abstract Embedded systems widely used in ubiquitous environments usually employ an

event-driven programming model instead of thread-based programming model in order to create a
more robust system that uses less memory. However, as the software for embedded systems becomes
more complex, it becomes hard to program as a single event handler using the event-driven
programming model. This paper discusses the implementation of non-preemptive real-time scheduling
theory for the design of embedded systems. To this end, we present an efficient schedulability test
method for a given non-preemptive task set using a sufficient condition. This paper also shows that
the notion of sub-tasks in embedded systems can overcome the problem of low utilization that is a

main drawback of non-preemptive scheduling.
Key words :

1. Introduction

Networked embedded systems such as wireless
sensor nodes or low-end communication devices are
usually designed to be event-driven, so they are

co] EEL AANGw 20079 % AAA TR X Dol 9Jsle] ATHAL
PR Q¥ngn AR T ay
mpark @incheon.ac.kr
=EES 2008 1€ 24
Axgtg 2008 119 179

Copyright©2009 I3 Hol3}3] : 719l Z2ou} m B2l 3% o] Az
B9 AA T AR tT BAR F& O Y AR AE st
ol W, AR el H Suto g 4T 4 fon A Hola|o] B 27} &3
& tEA] HAE ok Bt o] 9oe] BHog ¥A) wE 2% A4 5 RE
FE ARG She A9l sl Abddl 3718 91 ¥18-S AR o}
it

AR =R AFP 44 2 #E A15A A28(2009.2)

o
=
=

embedded system, real-time, scheduling

reactive and power efficient. One of the main
drawbacks in use of the preemptive thread-based
programming model for such systems is the unne-
cessary concurrency that is introduced by the multi-
thread model that forces programmers to cope with
synchronization between threads, consequently makes
programs not robust [1]. Another problem with the
preemptive thread-based programming model is the
stack memory overhead that is especially burden-
some in embedded systems. However, when a sys-
tem requires run-time scheduling, event-driven pro—
gramming based on control flow state machines is
difficult.

Consider an example of digital signal processing

in [2]. An embedded system includes a function

90 A A3 =7 A

that converts CD sampling rate (44.1 kHz) to
digital audio tape (DAT) rate 48 kHz. First, a
polyphase FIR filter raises the sampling rate from
44.1 kHz to 88.2 kHz. The next stage raises the
sampling rate to 117.6 kHz. Then the sample-and-
hold interface may duplicate or drop samples de-
pending on whether the sampling clock for the
DAT is faster or slower than 48 kHz. The dis-
continuities introduced during re-sampling procedure
are smoothed out by anti-aliasing filters. Because
the relative rates of the clocks in this example are
not known off-line, it is impossible to statically
determine the execution order of the entire system.
Thus
scheduling.

this kind of systems requires run-time
Non-preemptive scheduling on uniprocessor sys—
tems can eliminate the synchronization overhead of
the resource-protecting mechanism. For example,
[2] showed

scheduling can be used for real-time signal pro-

that non-preemptive fixed priority

cessing applications because the amount of pro-
cessor state information (including the stack to be
stored) can be reduced. Since we can expect much
lower overhead and smaller memory requirements
at run time with non-preemptive scheduling, it can
overcome the drawbacks of the thread-based pro-
gramming model. However, the processor utilization
of non-preemptive scheduling can be arbitrarily
small [3] if tasks are not carefully designed. Also,
to design a system, we should determine the
crucial system parameters like how often the task
should run and how long the task can occupy the
Processor.

In this paper, we find a sufficient condition for
schedulability with non-preemptive fixed-priority
scheduling to efficiently check the schedulability,
and we show that the proposed test is a good
approximation of exact schedulability by simulation.
While current polynomial time schedulability tests
are applied only to RM priority ordering, the
proposed method can be applied to any priority
ordering. To attack the problem of low utilization
of non-preemptive scheduling, it is shown that the
notion of sub-tasks in embedded systems can
enhance the processor utilization in non-preemptive
fixed priority scheduling. We present a method to

Feo A4 2 A A 15 FE A 2 3(20092)

calculate the worst case response time of tasks
when tasks are decomposed into sub-tasks.

The rest of the paper is organized as follows.
Section 2 gives a review of related work. Section 3
summarizes the assumptions and terms that are
used in this paper. In section 4, we present an
efficient schedulability test method for a given task
set. In section 5, we tackle the problem of low
processor utilization, which is the major problem
with non-preemptive scheduling. Finally, section 6

concludes our work.

2. Related Work

Though non-preemptive schedulers have received
less attention than preemptive ones, some results
are known for dynamic priority non-preemptive
scheduling. It is known that the general problem of
finding a feasible schedule in an idling non-
preemptive context is NP-complete. Jeffay et al. [3]
showed that Earliest Deadline First (EDF) is
optimal among non-idling schedulers, and non-
preemptive scheduling of concrete periodic tasks is
NP-hard in the strong sense. They also found a
necessary and sufficient condition for schedulability
under non-idling EDF. It was shown in [4] that
the worst case response time can be calculated
using the results of [5].

While EDF is optimal for both preemptive and
non-preemptive scheduling, it was shown in [4]
that Deadline Monotonic (DM) scheduling algorithm,
which

scheduling, is not optimal for non-preemptive fixed

is optimal for preemptive fixed priority
priority scheduling, so Rate Monotonic (RM) sche-
duling is not optimal either. In [4], they found a
method to obtain the worst case response time of
tasks,

response time takes pseudo-polynomial time. Based

but the calculation of the worst case

on the results of [4], [6] proposed fixed-priority
scheduling with a preemption threshold that sub-
sumes both preemptive and non-preemptive sche—
duling.

Though we can determine whether a given task
set is schedulable, we do not have a simple and
efficient schedulability test method like the utili-
in [7]. Other
scheduling methods for designing embedded real-

zation bound of preemptive RM

AN WY A2"e] AAE 99 wdFE ngeAedd 2AEY 91

time systems are based on off-line scheduling
analysis. However, making static schedules is NP
problem even when tasks have fixed priorities [8].
One of the recent research results on off-line
scheduling can be found in Pre-scheduling [9]. In
Pre—scheduling, task schedules are generated off-
line based on EDF using Linear Programming, and
scheduled according to the off-line schedule with
sporadic tasks on-line. By off-line analysis, we can
validate schedules of the system design with given
parameters. But considering the software is
modified very often in development process, the
high complexity of off-line algorithms may affect
the development time.

To make non-preemptive scheduling useful in
embedded systems like digital signal processing
units, the problem of low processor utilization must
be solved. To cope with the problem, techniques for
decomposing a task into several pieces have been
used as in [9] and [10]. But most of the research
has been done with EDF-based schemes. Another
approach to the problem can be found in [11]
which suggest the use of (mk)-firm deadline model
[12] to drop some task instances, and this approach
also is based on EDF scheduling scheme.

3. System Model and Assumptions

A periodic task is denoted by 7,. A periodic task

set is represented by the collection of periodic
tasks, 7={r}. Each 7 is a pair (7,C) where 7

i

is the period and ¢ is the worst case execution
time, and Z; = ¢ >0. The relative deadline of a
task is the same as its period. This requires that if
7, is invoked at time t,, 7, must have C units of

processor time allocated to it in the

[¢,.t, + 7.

interval

A concrete task has a specified release time, or
the time of the first invocation. The difficulty of
scheduling tasks can be affected by the release
time [3]. A periodic task set is said to be sche-
dulable if and only if all of the concrete task sets
that can be generated from the periodic task set
are schedulable. We will consider only periodic task
sets in this paper.

The following is a summary of the assumptions

that are used in this paper.

* There is only one processor.

* Scheduling overhead can be ignored.

» There is no release jitter. (ie., tasks become

ready when they arrive.)

* Time is represented by an integer number, so

time is discrete and the clock ticks are indexed
by integer numbers, as in [3].

When scheduling overhead cannot be ignored, the
overhead can be counted as a part of the worst
case execution time of tasks. For embedded sys-—
tems, we can use many currently available techni-
ques for accounting the worst case execution time
of tasks [13].

Though we assume that time and all task para-
meters are integer, this assumption does not affect
the generality of the schedulability results since it
was shown that a common continuous schedule
exists if and only if a feasible discrete schedule
exists [14]. Therefore, the integral time assumption
ensures the generality of this paper’s results.

The assumptions used in this paper are well
accepted in real-time literature. The same assump-—
tions have been used for analyzing the Controller
Area Network (CAN), and the analysis method is
used successfully as a basis of a commercial CAN
schedulability analysis tool by companies like Volvo
Communications Technologies AB, in design and
development of the CAN and electronics systems
for their vehicles [15].

For a given task 7, we define hp(7;) as the sub-
set of 7 that consists of tasks with priority higher
than 7. On the other hand, lp(r) is the set of
tasks with lower priority than 7,. For the conveni-
ence of discussion, without any loss of generality,
we assume that tasks are sorted in non-decreasing
order by period. That is, for any pair of tasks 7

and 7;, if j<i then T.<1T.

4. Schedulability Test Methods for Non-
Preemptive Scheduling

The first step in designing a system is to deter—
mine whether or not tasks can be successfully
scheduled with given system parameters (resources).

In this section, we will present conditions for suc-

92 AEAFI)=EA: DF

cessful non-preemptive scheduling.

The following lemma from [4] shows that the
concept of level-i busy period [16] is also useful in
determining the schedulability of non-preemptive
systems.

Lemma 1. A periodic task 7, has the largest
response time in a level-i busy period that is obta-
ined by releasing all of the tasks 7; such that
7,€hp(7;) and

the task 7, such that 7, €lp(7;) and G =max{Gll >i}

7, simultaneously at time ¢t=0, and

at time t=—1.

The level-i busy period given in Lemma 1 is
basically similar to the critical interval of the dyna-
mic priority driven scheduler in [3]. The interval
given in Lemma 1 is an extension of the concept
of the critical instant in [7]. Using Lemma 1, [4]
found that the worst case response time of a task
7, is given by the following theorem.

Theorem 1. The worst case response time of
any task 7 is given by

T =ma.x{'wi,q+CZ—qu;lq=0,1,...,Qi}

where

w; = qC;+ Z (1+ { w]i’,q J)Cj+max{Ck—IITkElp(‘ri)}
;€ hp{r} i

and @ - , and where Z, is the length of the
longest level-i busy period in non-preemptive
context.

Theorem 1 gives us an exact schedulability test
method for non-preemptive fixed priority scheduling:
it is trivial that a task set is schedulable if and
only if r;, <7, for V7,€7. Though we can deter-
mine the schedulability exactly using Theorem 1,
the time complexity of the test is high because it
runs in pseudo-polynomial time. Using the results
of [7]1 and based on the Liu and Layland’s utili-
zation bound (LL-bound), we can use the following
sufficient condition as a schedulability test:

A task set 7 is schedulable by RM if

G CG+B -

A 27’+ - <il2' 1)

j=1 %5 i

where B, is the worst case blocking time of 7

By considering the processor as a shared resource,
we can determine the schedulability of the task set

2o AA g #Y A 153 A 2 5(20092)

with B =max{Glk>i}. However it was shown in
[16] that LL-bound is pessimistic. \
To get less pessimistic utilization bound, [7] sug-
gested a schedulability test using the exact schedul-
ability test method in [16] with Priority Ceiling
Protocol (PCP) [17] by considering the processor as
a shared resource as follows:
A task set 7 is schedulable by RM if
1 17, C
ks

i B
V7,E7, mm(klERle 7 lnsl

where B, is the worst case blocking time of 7 and
R={kl<k=<il<i< |T/T,]}.

However, the test still runs in pseudo-polynomial
time, though it provides only a sufficient condition.
Also, the above test methods can be applied only
to RM scheduling.

To find an efficient schedulability test method
that runs in polynomial time and that is less pessi-
mistic, we first introduce the following function:
L} c

G(t)= { .
7€ hplr) 1; !

1

The function G,(t) represents the amount of exe-

cution time that is requested by tasks with higher
priority than 7, from time zero to time ¢ when
these tasks are released at time 0.

Lemma 2. For a task 7;, the maximum interfer-

with higher priority than 7, when T,

ence due to T; ;

7
and 7; are simultaneously released at time 0 is less
than or equal to:

72
if G(t) 7 G, —1= T,
J

NS

1;-] ’
K
7} C;, otherwise

where Cf;mx is the maximum worst case execution
time among tasks in Ip(r).
Proof:
The last activation of the task 7

; before T is made

7\,

By Lemma 1, the largest

at time 1}—(7;-mod1}), which is equal to

Let this value be Z;.
response time is obtained by releasing all tasks in

Ip(r;) with task 7, simultaneously and the task with

Ciax at time t=—1. Thus the maximum interfer-

max

AN WRE A2"e] dAS 98 mARE agsded 2AEY 93

ence in the execution of 7, is less than or equal to

q(t)(+C . -1

max

];,

]l".
L

If the total execution time requested from hp(r;)
before Z;; plus C...—1 is greater than or equal to
L;, 7, might not run before L because the proce-
ssor should serve the higher priority tasks and the
lower priority task that is released at time t=-—1.
could be
executed prior to 7, but if 77 modT;=0, the last

i

In this case, the last activation of 7

activation of 7; will interfere with the next activa-

tion of 7. Thus the maximum interference due to

i

7, cannot exceed T
J

c.

When the total execution time that is requested

from hp(r;) before L, plus Cl..—1 is less than

L,-]-, 7, should have a chance to be scheduled before

L. Since tasks are non-preemptive, once task T

i

was executed it runs until it finishes its job, so the
last activation of 7; does not interfere with 7.

Thus the maximum interference due to 7; is given

E

by 7] C; |
Using Lemma 2, a sufficient condition for successful

non-preemptive RM scheduling can be derived as

the following theorem.

Theorem 2. A periodic task set T is schedulable
if

i=1
CGn—1+C+ 2]11“ = T} for Y7,<7 where
i=

C :{max{C}Jk>i}, for i<n
max 1 , if i=n

e el b 7
}cj,lf ol | 7|7+ a1z |2 1
IZ]= [4 J J

Cj, otherwise

EERSTES

N

iy

Proof:

By Lemma 2, the maximum interference due to

tasks with higher priority than 7; is less than or

i—1
equal to .7, By Lemma 1, the maximum interfer-
j=1

ence due to tasks with lower priority than 7; is given

i—=1
by C..—1l. Therefore if G, —1+C+ 3 I, <T,
j=1

ma:

7, is schedulable. |

As an example of application of Theorem 2, let
us consider a feedback control system wherein the
control loops are closed through real-time network.
This kind of system is called Networked Control
System (NCS) [18]. Let us take an example in [18],
where there are 3 NCSs and the transmission time
of the NCSs is 4 ms, using DeviceNet specification.
They calculated the transmission period of NCSs
as: 146 ms, 15.0 ms, and 16.8 ms using LL bound.

For a task set with 3 tasks, LL bound requires
1
utilization is no more than 3(2% —1) ~0.7798. Since

(4/14.6+4/15.0+4/16.8) = 0.7787, the periods they
calculated can be thought as tight when LL bound
is considered. However, applying Theorem 2, we
can obtain shorter periods for NCSs.

To apply Theorem 2, let us change the periods
to 146t, 150¢, and 168¢, and transmission time to
40t where t is 0.1 ms. Since the possible shortest
period is 100t, let us change the Task 1's period
to 100t. Then we have

Task 1: (40t-1t) + 40t = 79t < 100t

Thus Task 1 is schedulable with the period of 10
ms. And since G,(100t)+40¢t—1t =79t <100¢, Task

2’s period can be as short as 120¢, that is, 12 ms.
Task 2: (40t-1t) + 40t + 40t = 119¢ < 120

Finally, since G;(100t) =80t <100t and G,(120¢) =

120t = 120¢, Task 3's period can be as short as 160
t, that is, 16 ms.

Task 3 (1t-1t) + 40t + 40t + 2X40t = 160t

Therefore, by applying Theorem 2, we can obtain
tighter periods for NCSs in 18], 10 ms, 12 ms, 16
ms. As shown in this example, the proposed method
can be efficiently used to design reactive embedded
systems to increase the system utilization. As a
result of the enhancement, the system utilization
increases to 0.9833.

94 AEAI=EA) FHE A R 8 A 159 A 2 2Q092)

To see the effectiveness of the proposed test
method, we conducted a simulation by using the
randomly generated tasks. Task parameters were
generated using the UNIX random() function. Periods
are smaller than 100,000 and the worst case exe-
cution times were generated to be smaller than
10,000. Any one task does not have a utilization of
over 70%, and all of the tasks have at least 0.5%
utilization. A total of 1,300 task sets, containing
8337 tasks, were generated and tested. We compared
the percentage of task sets that were determined to
be schedulable by preemptive and non-preemptive
RM scheduling. The results are summarized in
Table 1. For comparison, the percentage of preem-
ptive task sets that were determined to be schedul-
able by preemptive RM is presented also. The sche-
dulability of preemptive RM is calculated using the
method in [16].

As shown in Table 1, the schedulability test
given in Theorem 2 performs better than the test
that was based on LL-bound and PCP. For task
sets with a processor utilization of lower than 80%,
the proposed test method determines the schedul-
ability of all of the task sets exactly. For task sets
with 80% of the average utilization, the proposed
method shows only 4% of the error in determining
the schedulability (4% of task the sets are deter-
mined as "not schedulable,” though they are, in
fact, schedulable). For task sets with high utilization,
the error in determining the schedulability becomes
larger, but it shows a better ratio than the PCP-
based method shows. Furthermore, the test based
on Theorem 2 runs in polynomial time while the
PCP-based test runs in pseudo-polynomial time.

Thus, the proposed method runs faster than the
PCP-based test and it has less error in determining
the schedulability of the task sets.

5. Enhancement of Processor Utilization
for Embedded Systems

The major drawback in programming an eveni-
driven system using non-preemptive scheduling is
that the processor utilization can be very small in
order to guarantee the deadlines of tasks. In prac-
tical situations, however, we can achieve higher
utilization by carefully choosing the task parameters.
For example, in preemptive scheduling, harmonic
task sets [19] (each task’s period is an exact
divisor of each longer period) and load scaling
method [20] can achieve higher utilization. In this
section, we show that the notion of sub-tasks in
embedded systems can enhance the processor utili~
zation.

Load scaling by increasing the period that is effec—
tive in preemptive scheduling often does not work
for non-preemptive scheduling. Let us take a task
set {(20,10), (30,15)} for example. This task set is
not schedulable by preemptive RM, but if we adjust
the task parameters to be {(20,10), (40,200} (e,
make the period harmonic but keep the task utiliza-
tion the same as before), then the task set becomes
schedulable by preemptive RM. But in non-preemp-
tive scheduling, because lengthening the period also
makes the worst case execution time of the lower
priority task larger, the task set still remains unsche-
dulable by non-preemptive RM.

From Theorem 2, we notice that if we can reduce
the interference that is caused by the lower priority

Table 1 Schedulability test results

Non-Preemptive RM

Average Preemptive RM .

utilization Exact test Theorem 2 PCP test LL test
10% 100% 100% 100% 100% 100%
20% 100% 98% 98% 98% 98%
309 100% 96% 9% 9696 96%
40% 100% 92% 92% 92% 92%
50% 100% 90%6 0% 90% 90%
60% 100% 93% 93% 93% 92%
70% 100% 78% 78% 75% 73%
80% 96% 74% 719% 65% 0%
90% 46% 34% 19% 13% 0%

ANZ WY Azde BAS

task, the processor utilization may increase. From
this investigation, we see that splitting tasks may
enhance processor utilization. In many embedded
applications, tasks consist of sub-tasks, where a
sub-task is a part of the job a task should do at
each period [15]. This situation can be modeled
with task 7 and with sub-tasks {7 727 v},
where N, is the number of sub-tasks of 7,. Every
7,; has the same period Z; and priority, but it has

its own worst case execution time C

(N
ZQ =G.

The next theorem shows that by splitting a task

Note that

into small pieces, we can enhance the processor
utilization.

Theorem 3. For a given task set 7={r,} where

each task 7, has sub-tasks {7_,'1177-1‘127"'77;’A\/7}, the

blocking time experienced by a task 7, is given by
max{Q li<kl<j<N]}-1L

Proof:

Let ¢, be the release time of 7,'s instance and t,
be the completion time of the instance. Note that
there is no idle time in time interval [t,,¢,]. Since 7,
's instance completes its execution at time t,, only
jobs of tasks in hp(r;) and 7. can execute in the
time interval [t;,¢,] among tasks which release their
instances in the time interval. By Lemma 1, the
largest response time is obtained by releasing tasks
in Ap(7;) with 7, simultaneously. Let us assume that
a task 7,Elp(r;) is released at time ¢, —1. Then all
of the sub-tasks of ’Tk:{Tkwl,’l'hQ,...,Tk’Nk} become
ready at t;—1 but only one sub-task can start
execution in a uniprocessor system. Because of the
non-preemptability, the sub-task runs to completion,
thus making the response time of 7, longer by
max{C ;}—1 at most. L

The worst case response time of tasks are also
affected by the sub-tasking operation. The next
theorem shows the worst case response time of
tasks with sub-tasks can be calculated with the
same time complexity as Theorem 1.

Theorem 4. For a given task set 7= {r} where

each task 7, has sub-tasks { DT T Vl}’ the

A MHHY A FAEH 2AEY %

worst case response time of any task 7, is given
by
T :max{wm + Cl',“\,l—qﬂq:O,l,.,.,Qi}

where
v, = qC + Z) '+
‘rEhp{T}
+max{G, ;]z<k1§ gN} 1
and @ _ , and where Z; is the length of the

longest level-i busy period in non-preemptive context.

Proof:

By Theorem 3, the maximum blocking time due
to a lower priority task 7, cannot exceed rnax{C}C‘]-}.
Thus, it is clear that
max{G, i <k1<j<Nj-1

the blocking time is

Let us denote this
value as B.

Let 7., be the last task which finishes its job
when all of 7,; are simultanecusly released. Then,
the worst case response time of 7, is the same as
the worst case response time of the sub-task 7 ..
Without any loss of generality, we can assume that

Ti,z :Ti,N,‘

By definition, 7, 5 has the worst case
execution time of C

By Theorem 1, the worst case response time of

TN, is given by

Win,g = QQ,A; +
TSl

N~1 Win g
Gt N1+ | =5 | |Gt
k=1

b

w.,
1+ —2

= qq“v,*‘ Z

7,Ehp{r}

wlAYa
=qCnt O (1+ l-%iJ)C}+(1+q)(0r0i,m)+3
J

7,€hp{r}

-c+ ¥ (1+l e)C+C Coxt B
J

™, EhpiT}

By substituting wy,, with w; the theorem is

g
proved. | |

To see how the processor utilization is enhanced,
we compare the percentage of schedulable task sets
of preemptive RM scheduling and non-preemptive
RM scheduling with sub-tasks using the task sets
that were described in the previous section. In this
experiment, when a task set is not schedulable by
non-preemptive RM, we just divide the task with
the maximum execution time into two sub-tasks

such that each task has exactly half of the execu-

ARASE A P A R B A 158 A 2 Q0002

Table 2 Enhanced schedulability with task splitting

Average Preemptive Non-Preemptive Non-Preemptive BM
utilization RM RM with sub-tasks
10% 100% 100% 100%
20% 100% 98% 99%
30% 100% 96% 100%
40% 100% 92% 97%
50% 100% 90% 98%
6096 100% 93% 97%
70% 100% 8% 89%
80% 96% 74% 80%
90% 46% 34% 44%

tion time of the task. The results of the simulation
are summarized in Table 2.

Even though we simply split a task into two, the
non-preemptive RM scheduling with sub-tasks can
successfully schedule most of the task sets when
the load of the task sets is not heavy. And in over-
load situation (utilization as much as 90%), the
percentage of schedulable tasks in non-preemptive
scheduling is similar to that in preemptive scheduling.

6. Conclusion and future work

In this paper, we showed that event-driven embe-
dded systems can be modeled as non-preemptive
real-time systems. By employing a non-preemptive
scheduling algorithm, we can achieve the advan-
tages of an event-driven programming model and
of thread-based programming model. The advantages
include robustness, small memory usage by sharing
a stack, no data races, simplicity, etc. To design a
system, we should determine the crucial system
parameters like how often the task should run and
how long the task can occupy the processor. For
this purpose, we have presented a sufficient condi-
tion for the existence of non-preemptive fixed prio—
rity scheduling that runs in polynomial time. Experi—
mental results show that the proposed method is a
good approximation of the exact schedulability test.

Though non-preemptive scheduling has many
advantages, it suffers from low processor utilization.
To attack the problem, we suggested enhancing the
processor utilization by splitting a task into sub-
tasks. The sub-tasks have the same period as the
task, and the total amount of maximum execution
time remains unchanged. By modeling each stage

of the computational jobs in embedded systems
with the same frequency as a sub-task, we can
achieve higher utilization.

This paper focuses on scheduling tasks that deal
with periodically occurring events. But in some
situation, embedded systems may handle aperiodic
events - events that occur just one time, or their
period is too long to be considered as periodic. In
this case, the system tries to minimize the response
time of the task handling the aperiodic events [21].
Though we can handle the events by a polling
server with a certain period, the polling server may
cause unnecessary scheduling overheads and result
in system utilization. Most of the existing algorithms
are developed for preemptive scheduling, and few is
available for non-preemptive fixed priority scheduling
[22]. Thus the effective handling of aperiodic tasks
in such an environment is also an important issue,
and it will be our future work.

References

[1] F. Dabek, N. Zeldovich, M. Frans Kaashoek, D.
Mazieres, and R. Morris. Event-driven program-
ming for robust software. In Proceedings of the
10th ACM SIGOPS European Workshop, pages
186-189, September 2002.

[2] T. M. Parks and E. A. Lee. Non-preemptive real-
time scheduling of dataflow systems. In Procee-
dings of IEEE International Conference on Acou-
stics, Speech, and Signal Processing, pages 3225-
3238, May 1995,

[3]1 K. Jeffay, D.F. Stanat, and C.U. Martel. On non-
preemptive scheduling of periodic and sporadic
tasks. In Proceedings of IEEE Real-Time Systems
Symposium, pages 129-139, December 1991.

[4] L. George, N. Riviere, and M. Spuri. Preemptive
and non-preemptive real-time uniprocessor sche-

(5]

(6]

[7]

[8]

[91

[10]

[11]

[12]

{13]

(4]

[15]

{16]

{171

AA WA A2He HAE

duling. Technical report, INRIA, 1996.

M. Spuri. Analysis of deadline scheduled real-time
systems. Technical report, INRIA, 1996.

Y. Wang and M. Saksena, Scheduling fixed-
priority tasks with preemption threshold. In Pro-
ceedings of IEEE International Conference on
Real-Time Computing Systems and Applications,
pages 328-335, 1999.

C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environ-
ment. Journal of ACM, 20(1):46-61, 1973.

R. Gerber, S. Hong, and M. Saksena. Guaran-—
teeing real-time requirements with resource-based
calibration of periodic processes. IEEE Trans-
actions on Software FEngineering, 21(7):579-592,
1995,

W. Wang, A. K. Mok, and G. Fohler. Pre-sche-
duling. Real-Time Systems, 30(1-2):83-103, 2005.
F. Balarin and A. Sangiovanni-Vincentelli, Sche-
dule validation for embedded reactive real-time
systems. In Proceedings of the 34th Annual ACM/
IEEE Conference on Design Automation, pages
52-57, 1997.

L.-P. Chang. Event-driven scheduling for dynamic
workload scaling in uniprocessor embedded sys-
tems. In Proceedings of the 2006 ACM Symposium
on Applied Computing, pages 1462-1466, 2006

P. Ramanathan and M. Hamdaoui. A dynamic
priority assignment technique for streams with
(mk)-firm deadlines. IEEE Transactions on Com-
puters, 44(12):1443-1451, 1995.

R. Wilhelm, E. Jakob, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Mueller, 1. Puaut, P. Puschner,].
Staschulat, and P. Stenstrom. The worst-case
execution-time problem -- overview of methods
and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3), Article No.
36, 2008.

S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preem-
ptive scheduling of periodic, real-time tasks on
one processor. Real-Time Systems, 2(4):301-324,
1990.

R. I Davis, A. Bums, R. J. Bril, and] J.
Lukkien, Controller Area Network (CAN) Sche-
dulability Analysis' Refuted, Revisited and Revised,
Real-Time Systems 35(3):239-272, 2007.

J.P. Lehoczky, 1. Sha, and Y. Ding. The rate
monotonic scheduling algorithm: Exact characteri—-
zation and average case behaviour. In Proceedings
of IEEE Real-Time Systems Symposium, pages
166-171, 1989.

L. Sha, R. Rajkumar, and]. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,

CERIREL I EREE

(18]

[19]

[20]

[21]

[22]

il
3t

A A
A2

2AEY 97

39(9):1175-1185, 1990.

M. S. Branicky, S. M. Phillips, and W. Zhang.
Scheduling and feedback co-design for networked
control systems. In Proceedings of the 41st IEEE
Conference on Decision and Control, pages 1211-
1217, 2002.

J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil,
and A. Wellings. Using harmonic task-sets to
increase the schedulable utilization of cache-based
preemptive real-time systems. In Proceedings of
International Workshop on Real-Time Computing
Systems Application, pages 195-202, 1996.

T.-W. Kuo and AXK. Mok, Incremental recon-
figuration and load adjustment in adaptive real
time systems. IEEE Transactions on Computers,
48(12):1313-1324, 1997.

J. K. Strosnider, J. P. Lehoczky, and L. Sha. The
deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments.
IEEE Transactions on Computers, 44(1):73-91, 1995.
W. Li, K. Kavi, and R. Akl. A non-preemptive
scheduling algorithm for soft real-time systems.
Computers and Electrical Engineering 33(1):12-29,
2007.

8 7 F

1996\ Aehistw 28|t sta(F 3t
AD. 1998 ME&distn HREITSFHF
gAAb. 20029 A& #7)HFHH
FER(FEhRAD. 2002 ~2006'd LGA
2 wEATA 20063 ~2007d IBM
Ubiquitous Computing Lab. 20073~
AR sty HAFE TG ALAAL BARoks AA
H, AR 2E

